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Tutorial 4: The BMM-Algorithm: Not a BMW!

Given a finite dimensional vector space V over a field K , we want to turn it
into a module over the polynomial ring P = K[x1, . . . , xn] . How can we succeed
in doing this? One important example is the case V = P/I where I ⊆ P is a
zero-dimensional ideal. Here the canonical surjective map P −→ P/I makes V
a cyclic P -module. Are there other examples? How can we define a P -module
structure on V ? How can we check whether a P -module structure on V yields
a cyclic module? These are the questions. Now let us look for answers.

Let us choose a K -basis B = (v1, . . . , vµ) of V . Thus every endomorphism
of V can be represented by a matrix of size µ × µ over K . In particular,
when V is a P -module, then M1, . . . , Mn denote the matrices corresponding
to the multiplication endomorphisms µxi : V −→ V .

Using the following Buchberger-Möller algorithm for matrices, we can cal-
culate the kernel AnnP (V ) of the composite map

η : P −→ EndK(V ) ∼= Matµ(K)

where η is the map which sends a polynomial f ∈ P to the multiplication
map µf : P −→ P . Moreover, the algorithm provides a vector space basis
of P/ AnnP (V ). To facilitate the formulation of this algorithm, we use the
following convention. Given a matrix A = (aij) ∈ Matµ(K), we order its
entries by letting aij ≺ ak` if i < k , or if i = k and j < ` . In this way we
flatten the matrix to a vector in Kµ2

. Then we can reduce A against a list of
matrices by using the usual Gaußian reduction procedure.

a) (The BMM-Algorithm)
Let σ be a term ordering on Tn , and let M1, . . . ,Mn ∈ Matµ(K) be
pairwise commuting. Consider the following sequence of instructions.

1. Let G = ∅ , O = ∅ , S = ∅ , N = ∅ , and L = {1} .

2. If L = ∅ , return the pair (G,O) and stop. Otherwise let t = minσ(L)
and delete it from L .

3. Compute t(M1, . . . , Mn) and reduce it against N = (N1, . . . , Nk) to
obtain

R = t(M1, . . . , Mn)−
k∑

i=1

ciNi with ci ∈ K

4. If R = 0, append the polynomial t−∑
i cisi to G , where si denotes

the ith element of S . Remove from L all multiples of t . Continue
with step (2).

5. Otherwise, we have R 6= 0. Append R to N and t − ∑
i cisi

to S . Append the term t to O , and append to L those elements
of {x1t, . . . , xnt} which are neither multiples of a term in L nor in
LTσ(G). Continue with step (2).
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Prove that this is an algorithm which returns the reduced σ -Gröbner
basis G of AnnP (V ) and a list of terms O whose residue classes form a
K-vector space basis of P/ AnnP (V ).

Hint: You can proceed as follows:

1. To prove termination, use Corollary 1.3.6.

2. Let I = AnnP (V ), and let H be the reduced σ -Gröbner basis of I .
To show correctness, prove by induction that after a term t has been
treated by the algorithm, the following holds: the list G contains all
elements of H whose leading terms are less than or equal to t , and
the list O contains all elements of Tn \ LTσ{I} which are less than
or equal to t .

3. Show that the polynomial t − ∑k
i=1 cisi resulting from step (3) of

the next iteration has leading term t .

4. Prove that the polynomial g = t −∑k
i=1 cisi is an element of H if

R = 0 in step (4).

5. Finally, show that the term t is not contained in LTσ(I) if R 6= 0 in
step (5).

b) Apply the BMM-Algorithm to the following example. Let V = Q3 , let
B = (e1, e2, e3) be its canonical basis, and let V be equipped the the
Q[x, y] -module structure defined by

M1 =




0 1 1
0 2 1
0 1 1


 and M2 =




0 1 0
0 1 1
0 1 0




Compute the reduced DegLex -Gröbner basis of AnnP (V ) and a K -basis
of P/ AnnP (V ).

c) Implement the BMM-Algorithm in a CoCoA function BMM(. . .). Apply your
function to the example above and compare its result to yours.

Now we are ready for the second algorithm of this tutorial: we can check
effectively whether a P -module structure given by commuting matrices defines
a cyclic module.

d) (Cyclicity Test)
Let V be a finite dimensional K -vector space with basis B = (v1, . . . , vµ),
and let M1, . . . , Mn be pairwise commuting matrices. We equip V with
the P -module structure defined by M1, . . . , Mn . Consider the following
sequence of instructions.

1. Using the BMM-Algorithm, compute a set of terms O = {t1, . . . , tm}
whose residue classes form a K -basis of P/ AnnP (V ).

2. If m 6= µ then return "V is not cyclic" and stop.
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3. Let z1, . . . , zµ be new indeterminates and A ∈ Matµ(K[z1, . . . , zµ])
the matrix whose columns are ti(M1, . . . , Mn) · (z1, . . . , zµ)tr for i =
1, . . . , µ . Compute the determinant d = det(A) ∈ K[z1, . . . , zµ] .

4. Check if there exists a tuple (c1, . . . , cµ) ∈ Kµ for which the poly-
nomial value d(c1, . . . , cµ) is non-zero. In this case return "V is
cyclic" and w = c1v1 + · · ·+ cµvµ . Then stop.

5. Return "V is not cyclic" and stop.

Prove that this is an algorithm which checks whether V is cyclic and, in
the affirmative case, computes a generator.

Hint: Examine the images of the basis elements {t̄1, . . . , t̄µ} for linear
independence.

e) Apply the Cyclicity Test to the example above. Show that V is cyclic and
find a generator.

f) Let V = Q3 , let B = (e1, e2, e3) be its canonical basis, and equip V with
the Q[x, y] -module structure defined by the commuting matrices

M1 =




0 0 0
1 0 0
0 0 0


 and M2 =




0 0 0
0 0 1
0 0 0




Apply the Cyclicity Test and show that V is not cyclic although the
dimensions of V and of P/ AnnP (V ) coincide.

g) Write a CoCoA function CyclTest(. . .) which takes a list of n commuting
matrices and checks whether they define a cyclic P-module. Apply your
function to the above examples.

Hint: If the field K is infinite, the check in step (4) can be simplified to
checking d 6= 0. For a finite field K , we can, in principle, check all tuples
in Kµ .


