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Tutorial 4: The BMM-Algorithm: Not a BMW!

Given a finite dimensional vector space V over a field K, we want to turn it
into a module over the polynomial ring P = KJz1,...,z,]. How can we succeed
in doing this? One important example is the case V = P/I where I C P is a
zero-dimensional ideal. Here the canonical surjective map P — P/I makes V
a cyclic P-module. Are there other examples? How can we define a P-module
structure on V7 How can we check whether a P-module structure on V' yields
a cyclic module? These are the questions. Now let us look for answers.

Let us choose a K-basis B = (v1,...,v,) of V. Thus every endomorphism
of V' can be represented by a matrix of size pu x g over K. In particular,
when V' is a P-module, then Mi,..., M, denote the matrices corresponding

to the multiplication endomorphisms p, : V — V.
Using the following Buchberger-Moller algorithm for matrices, we can cal-
culate the kernel Annp(V) of the composite map

n: P — Endg(V) =2 Mat,(K)

where 7 is the map which sends a polynomial f € P to the multiplication
map py : P — P. Moreover, the algorithm provides a vector space basis
of P/ Annp(V). To facilitate the formulation of this algorithm, we use the
following convention. Given a matrix A = (a;;) € Mat,(K), we order its
entries by letting a;; < age if ¢ < k, orif i = k and j < £. In this way we
flatten the matrix to a vector in K 1#* _ Then we can reduce A against a list of
matrices by using the usual Gaufiian reduction procedure.

a) (The BMM-Algorithm)
Let o be a term ordering on T", and let My,..., M, € Mat,(K) be
pairwise commuting. Consider the following sequence of instructions.

1. Let G=0,0=0,S5S=0, N=0,and L ={1}.
2. If L = 0, return the pair (G, O) and stop. Otherwise let ¢ = min, (L)
and delete it from L.

3. Compute ¢(Mjy, ..., M,) and reduce it against N = (Ny,..., Ni) to
obtain

k
R:t(Ml,,Mn)—Z c; N; with ¢; € K
=1

4. If R =0, append the polynomial ¢t —)". ¢;s; to G, where s; denotes
the i element of S. Remove from L all multiples of ¢t. Continue
with step (2).

5. Otherwise, we have R # 0. Append R to N and t — ). ¢s;
to S. Append the term t to O, and append to L those elements
of {z1t,...,znt} which are neither multiples of a term in L nor in
LT,(G). Continue with step (2).
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)

Prove that this is an algorithm which returns the reduced o-Grébner
basis G of Annp(V) and a list of terms O whose residue classes form a
K-vector space basis of P/ Annp(V).

Hint: You can proceed as follows:

1. To prove termination, use Corollary 1.3.6.

2. Let I = Annp(V), and let H be the reduced o-Grébner basis of I.
To show correctness, prove by induction that after a term ¢ has been
treated by the algorithm, the following holds: the list G' contains all
elements of H whose leading terms are less than or equal to ¢, and
the list O contains all elements of T™ \ LT,{I} which are less than
or equal to t.

3. Show that the polynomial ¢ — Zle ¢;s; resulting from step (3) of
the next iteration has leading term t¢.

4. Prove that the polynomial g = ¢ — Zle ¢;s; is an element of H if
R =0 in step (4).

5. Finally, show that the term ¢ is not contained in LT, (I) if R # 0 in
step (5).

Apply the BMM-Algorithm to the following example. Let V = Q3, let
B = (e1,e2,e3) be its canonical basis, and let V' be equipped the the
Q[z, y]-module structure defined by

0 1 1 0 1 0
Mi=(0 2 1 and My=[0 1 1
01 1 01 0

Compute the reduced DegLex-Grobner basis of Annp(V) and a K -basis
of P/ Annp(V).

Implement the BMM-Algorithm in a CoCoA function BMM(...). Apply your
function to the example above and compare its result to yours.

Now we are ready for the second algorithm of this tutorial: we can check
effectively whether a P-module structure given by commuting matrices defines
a cyclic module.

d)

(Cyclicity Test)
Let V be a finite dimensional K -vector space with basis B = (v1,...,v,),
and let My,..., M, be pairwise commuting matrices. We equip V with

the P-module structure defined by M, ..., M, . Consider the following
sequence of instructions.

1. Using the BMM-Algorithm, compute a set of terms O = {t1,...,tm}
whose residue classes form a K -basis of P/ Annp(V).

2. If m # p then return "V is not cyclic" and stop.
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3. Let z1,...,2, be new indeterminates and A € Mat, (K|[z1,...,2.])
the matrix whose columns are t;(M,..., M,) - (z1,...,2,)" for i =
1,..., . Compute the determinant d = det(A) € K[z1,...,2,].

4. Check if there exists a tuple (ci,...,¢,) € K#* for which the poly-
nomial value d(ci,...,c,) is non-zero. In this case return "V is
cyclic" and w = cyvq + -+ + ¢,v, . Then stop.

5. Return "V is not cyclic" and stop.

Prove that this is an algorithm which checks whether V' is cyclic and, in
the affirmative case, computes a generator.

Hint: Examine the images of the basis elements {¢i,...,t,} for linear
independence.

Apply the Cyclicity Test to the example above. Show that V' is cyclic and
find a generator.

Let V = Q3, let B = (e1,ez,e3) be its canonical basis, and equip V with
the Q[z,y]-module structure defined by the commuting matrices

0 0O 0 0 O
Mi=1|1 0 0 and Mo=|(0 0 1
0 0O 0 0 O

Apply the Cyclicity Test and show that V is not cyclic although the
dimensions of V' and of P/ Annp(V) coincide.

Write a CoCoA function CyclTest(...) which takes a list of n commuting
matrices and checks whether they define a cyclic P-module. Apply your
function to the above examples.

Hint: If the field K is infinite, the check in step (4) can be simplified to

checking d # 0. For a finite field K, we can, in principle, check all tuples
in K*.



