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s given by f 7→ (f(p1), . . . , f(ps)) is called the

evaluation map associated to X.

The ideal IX = ker(eval) is called the vanishing ideal of X.
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1 – Approximate Data and Polynomials

Ralph W. Emerson: I hate quotations.

Tell me what you know.

P = R[x1, . . . , xn] polynomial ring over the real number field

X = {p1, . . . , ps} finite set of points in R
n

The map eval : P −→ R
s given by f 7→ (f(p1), . . . , f(ps)) is called the

evaluation map associated to X.

The ideal IX = ker(eval) is called the vanishing ideal of X.

The Gretchen Question: What happens if the points of X are

only empirical points, e.g. points whose coordinates are derived from

measured data?
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In the following we let − ε < 0 be a given threshold number.

A polynomial f ∈ P is said to vanish ε-approximately at a point

p ∈ R
n if |f(p)| < ε.

And here is the (hori-)crux of the matter: the polynomials which

vanish ε-approximately at X do not form an ideal.

Example 1.1 If |f(p)| = 0.001 < ε = 0.1 then |(1000 f)(p)| = 1 > ε.

Hence the question whether f vanishes at p or not depends on the

size of f , i.e. we need a metric on P .
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Definition 1.2 Let f = a1t1 + · · · + asts ∈ P , where

a1, . . . , as ∈ R \ {0} and t1, . . . , ts ∈ T
n.

Then the number ‖f‖ = ‖(a1, . . . , as)‖ is called the (Euclidean)

norm (or the size) of f .

Clearly, this definition turns P into a normed vector space.

5



Definition 1.2 Let f = a1t1 + · · · + asts ∈ P , where

a1, . . . , as ∈ R \ {0} and t1, . . . , ts ∈ T
n.

Then the number ‖f‖ = ‖(a1, . . . , as)‖ is called the (Euclidean)

norm (or the size) of f .

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial always vanishes ε-approximately at X!

5-b



Definition 1.2 Let f = a1t1 + · · · + asts ∈ P , where

a1, . . . , as ∈ R \ {0} and t1, . . . , ts ∈ T
n.

Then the number ‖f‖ = ‖(a1, . . . , as)‖ is called the (Euclidean)

norm (or the size) of f .

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial always vanishes ε-approximately at X!

Hence it is reasonable to consider the condition that polynomials

f ∈ P with ‖f‖ = 1 vanish ε-approximately at p.
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2 – Approximate Vanishing Ideals

Definition 2.1 An ideal I ⊆ P is called an ε-approximate

vanishing ideal of X if there exists a system of generators

{f1, . . . , fr} of I such that ‖fi‖ = 1 and fi vanishes ε-approximately

at X for i = 1, . . . , r.
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2 – Approximate Vanishing Ideals

Definition 2.1 An ideal I ⊆ P is called an ε-approximate

vanishing ideal of X if there exists a system of generators

{f1, . . . , fr} of I such that ‖fi‖ = 1 and fi vanishes ε-approximately

at X for i = 1, . . . , r.
More trouble ahead!

• Approximate vanishing ideals are not at all unique. They are not

necessarily zero-dimensional either!

• If the coordinates of the points are very small, every polynomial of

norm 1 in 〈x1, . . . , xn〉 vanishes at X.
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2 – Approximate Vanishing Ideals

Definition 2.1 An ideal I ⊆ P is called an ε-approximate

vanishing ideal of X if there exists a system of generators

{f1, . . . , fr} of I such that ‖fi‖ = 1 and fi vanishes ε-approximately

at X for i = 1, . . . , r.
More trouble ahead!

• Approximate vanishing ideals are not at all unique. They are not

necessarily zero-dimensional either!

• If the coordinates of the points are very small, every polynomial of

norm 1 in 〈x1, . . . , xn〉 vanishes at X.

In the following we ignore these problems and simply

compute an approximate vanishing ideal of X.

It’s kind of fun to do the impossible. (Walt Disney)
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3 – The Singular Value Decomposition
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3 – The Singular Value Decomposition

Theorem 3.1 Let A ∈ Matm,n(R).

There are orthogonal matrices U ∈ Matm,m(R) and V ∈ Matn,n(R)

and a matrix S ∈ Matm,n(R) of the form S =


D 0

0 0


 such that

A = U · S · Vtr = U ·


D 0

0 0


 · Vtr

where D = diag(s1, . . . , sr) is a diagonal matrix.
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In this decomposition, it is possible to achieve:

1. s1 ≥ s2 ≥ · · · ≥ sr > 0. The numbers s1, . . . , sr depend only

on A and are called the singular values of A.

2. The number r is the rank of A.

3. The matrices U and V have the following interpretation:

first r columns of U ≡ ONB of the column space of A
last m − r columns of U ≡ ONB of the kernel of Atr

first r columns of V ≡ ONB of the row space of A
≡ ONB of the column space of Atr

last n − r columns of V ≡ ONB of the kernel of A
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Definition 3.2 Let A ∈ Matm,n(R), and let ε > 0 be given. Let

k ∈ {1, . . . , r} be chosen such that sk > ε ≥ sk+1. Form the matrix

Ã = U S̃ Vtr by setting sk+1 = · · · = sr = 0 in S. Then Ã is called

the singular value truncation of A at ε.

9



Definition 3.2 Let A ∈ Matm,n(R), and let ε > 0 be given. Let

k ∈ {1, . . . , r} be chosen such that sk > ε ≥ sk+1. Form the matrix

Ã = U S̃ Vtr by setting sk+1 = · · · = sr = 0 in S. Then Ã is called

the singular value truncation of A at ε.

Corollary 3.3 Let Ã be the singular value truncation of A at ε.

1. ‖A − Ã‖ = sk+1 = min{‖A − B‖ : rank(B) ≤ k}

2. The vector subspace apker(A, ε) = ker(Ã) is the largest

dimensional kernel of a matrix whose Euclidean distance from A
is at most ε. It is called the ε-approximate kernel of A.

3. The last n − k columns vk+1, . . . , vn of V are an ONB

of apker(A, ε). They satisfy ‖Avi‖ < ε.
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4 – The BM-Algorithm

Let X = {p1, . . . , ps} ⊆ R
n and σ a degree compatible term ordering.

1. Let G = ∅, O = {1}, M = (1, . . . , 1), and d = 0.

2. Increase d by one. Let L = [t1, . . . , t`] be T
n
d \ 〈LTσ(G)〉 ordered

decreasingly w.r.t. σ. If L = ∅, return (G,O) and stop.

3. Append eval(t1), . . . , eval(t`) as new first rows to M and get a

matrix A. Find a matrix B whose rows are a basis of ker(Atr).

4. Reduce B to row echelon form and get a matrix C = (cij).

5. For the columns j of C containing a pivot element cij , append the

polynomial corresponding to row i to G.

6. For the columns j of C containing no pivot element, append tj

to O, append the row eval(tj) to M, and continue with (2).
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5 – The ABM-Algorithm

Let X = {p1, . . . , ps} ⊆ [−1, 1]n, let σ be a degree compatible term

ordering, and let ε > ε′ > 0.

1. Let G = ∅, O = {1}, M = (1, . . . , 1), and d = 0.

2. Increase d by one. Let L = [t1, . . . , t`] be T
n
d \ 〈LTσ(G)〉 ordered

decreasingly w.r.t. σ. If L = ∅, return (G,O) and stop.

3. Append eval(t1), . . . , eval(t`) as new first rows to M and get a

matrix A. Using the SVD of Atr, compute a matrix B whose

rows are a basis of apker(Atr, ε).

4. Reduce B to row echelon form. Normalize each row after every

reduction step. If at some point a column contains no pivot

element of absolute value > ε′ in the untreated rows, replace the

corresponding elements by zero. The result is a matrix C = (cij).
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5. For the columns j of C containing a pivot element cij , append the

polynomial corresponding to row i to G.

6. For the columns j of C containing no pivot element, append tj

to O, append the row eval(tj) to M, and continue with (2).
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5. For the columns j of C containing a pivot element cij , append the

polynomial corresponding to row i to G.

6. For the columns j of C containing no pivot element, append tj

to O, append the row eval(tj) to M, and continue with (2).

This is an algorithm which computes a pair (G,O).

The list G is a unitary minimal σ-Gröbner basis of the ideal

I = 〈G〉 ⊂ P and satisfies ‖ eval(g)‖ < δ for δ = ε
√

#G + ε′s
√

s and

all g ∈ G.

The list O contains an order ideal of monomials whose residue classes

form an R-vector space basis of P/I.
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5. For the columns j of C containing a pivot element cij , append the

polynomial corresponding to row i to G.

6. For the columns j of C containing no pivot element, append tj

to O, append the row eval(tj) to M, and continue with (2).

This is an algorithm which computes a pair (G,O).

The list G is a unitary minimal σ-Gröbner basis of the ideal

I = 〈G〉 ⊂ P and satisfies ‖ eval(g)‖ < δ for δ = ε
√

#G + ε′s
√

s and

all g ∈ G.

The list O contains an order ideal of monomials whose residue classes

form an R-vector space basis of P/I.

We have dimR(P/I) ≤ s. Thus I is a zero-dimensional ideal and

a δ-approximate vanishing ideal of X.
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6 – We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the

set X = {(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)} and use the

threshold numbers ε = 0.1 and ε′ = 10−6.
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set X = {(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)} and use the

threshold numbers ε = 0.1 and ε′ = 10−6.

1. Let G = ∅, O = {1}, M = (1, 1, 1, 1), and d = 0.
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6 – We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the

set X = {(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)} and use the

threshold numbers ε = 0.1 and ε′ = 10−6.

1. Let G = ∅, O = {1}, M = (1, 1, 1, 1), and d = 0.

2. Consider d = 1 and L = [x, y].

3. We form A =




0.01 0.49 0.51 0

0.01 0 0 0.99

1 1 1 1


. The SVD of Atr yields

s1 = 2.13, s2 = 0.91 and s3 = 0.35, so no singular value

truncation is necessary. We compute B = (0, 0, 0).
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4. We get C = (0, 0, 0).

14



4. We get C = (0, 0, 0).

6. Append x, y to O and get O = {1, x, y}. Moreover, let M = A.
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4. We get C = (0, 0, 0).

6. Append x, y to O and get O = {1, x, y}. Moreover, let M = A.

2. Consider d = 2 and L = [x2, xy, y2].
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4. We get C = (0, 0, 0).

6. Append x, y to O and get O = {1, x, y}. Moreover, let M = A.

2. Consider d = 2 and L = [x2, xy, y2].

3. We form the matrix A =




0.0001 0.2401 0.2601 0

0.0001 0 0 0

0.0001 0 0 0.9801

0.01 0.49 0.51 0

0.01 0 0 0.99

1 1 1 1




and compute SVD of Atr. We get the singular values s1 = 2.22,

s2 = 1.21, s3 = 0.40, and s4 = 0.006. Thus we have to truncate

the singular value s4 < ε. The SVD of Ãtr yields
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that the space apker(Atr, ε) is generated by the rows of

B =




0.65 −0.66 0.08 −0.33 −0.08 0.004

0.07 −0.10 −0.70 −0.02 0.70 −0.007

0.60 0.74 −0.02 −0.30 0.02 0.003



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that the space apker(Atr, ε) is generated by the rows of

B =




0.65 −0.66 0.08 −0.33 −0.08 0.004

0.07 −0.10 −0.70 −0.02 0.70 −0.007

0.60 0.74 −0.02 −0.30 0.02 0.003




4. Now we perform a normalized Gaußian reduction on B and get

the matrix

C =




0.65 −0.66 0.08 −0.33 −0.08 0.004

0 −0.027 −0.707 0.014 0.707 −0.007

0 0 −0.707 0.014 0.707 −0.007


.
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that the space apker(Atr, ε) is generated by the rows of

B =




0.65 −0.66 0.08 −0.33 −0.08 0.004

0.07 −0.10 −0.70 −0.02 0.70 −0.007

0.60 0.74 −0.02 −0.30 0.02 0.003




4. Now we perform a normalized Gaußian reduction on B and get

the matrix

C =




0.65 −0.66 0.08 −0.33 −0.08 0.004

0 −0.027 −0.707 0.014 0.707 −0.007

0 0 −0.707 0.014 0.707 −0.007


.

5. Append the polynomials

g1 = 0.65x2 − 0.66xy + 0.08y2 − 0.33x − 0.08y + 0.004,

g2 = −0.027xy − 0.707y2 + 0.014x + 0.707y − 0.007, and

g3 = −0.707y2 + 0.014x + 0.707y − 0.007 to G.
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2. For d = 3, we find L = [ ]. Hence the result is G = {g1, g2, g3}
and O = {1, x, y}.
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2. For d = 3, we find L = [ ]. Hence the result is G = {g1, g2, g3}
and O = {1, x, y}.

Therefore an approximate vanishing ideal of X = {p1, p2, p3, p4} is

given by 〈g1, g2, g3〉 where g1 ≈ x(x − y − 1

2
), g2 ≈ −0.03xy + g3, and

g3 ≈ (−1/
√

2)(y2 − y).
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2. For d = 3, we find L = [ ]. Hence the result is G = {g1, g2, g3}
and O = {1, x, y}.

Therefore an approximate vanishing ideal of X = {p1, p2, p3, p4} is

given by 〈g1, g2, g3〉 where g1 ≈ x(x − y − 1

2
), g2 ≈ −0.03xy + g3, and

g3 ≈ (−1/
√

2)(y2 − y).

The ideal 〈g1, g3, g3〉 is the exact vanishing ideal of three points!

The two points (0.49, 0) and (0.51, 0) have been combined and count

as one approximate point.
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Corollary 6.1 (The BB Version of ABM)

In the setting of the ABM-Algorithm, replace step 2 by the following

step 2’.

2’. Increase d by one, and let L be the list of all terms of degree d,

ordered decreasingly w.r.t. σ. Remove from L all terms which are

contained in 〈LTσ(g) | g ∈ G〉, but not the ones in the

border of O. If L = ∅, return the pair (G,O) and stop.

Otherwise, let L = [t1, . . . , t`].

The resulting algorithm computes a pair (G,O). The set

{LCσ(g)−1g | g ∈ G} is the O-border basis of a δ-approximate

vanishing ideal I = 〈G〉 ⊂ P of X where δ < ε
√

#G + ε′s
√

s. The

list O consists of all terms which are not contained in LTσ(I).
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The Last Remark

In the ABM-Algorithm we assumed X ⊂ [−1, 1]n. If the initial data

points are not in this set, we have to perform data scaling.
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Mathematically, the ABM-Algorithm and the stated error estimates

are also correct for arbitrary X ⊆ R
n. But the data scaling provides

additional numerical stability for the solution.
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The Last Remark

In the ABM-Algorithm we assumed X ⊂ [−1, 1]n. If the initial data

points are not in this set, we have to perform data scaling.

Mathematically, the ABM-Algorithm and the stated error estimates

are also correct for arbitrary X ⊆ R
n. But the data scaling provides

additional numerical stability for the solution.

We considered a real-world example consisting of 2541 points. For

both computations, we used ε = 0.0001. The scaled computation

took 2 sec., the unscaled one took 4 sec. The following pictures show

the mean size of the evaluation vectors of the computed GB

polynomials.
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Figure 1: Without Data Scaling
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Figure 2: With Data Scaling
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Without Data Scaling: 280 GB polynomials

GB mean evaluation error: 2.8 · 108
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Without Data Scaling: 280 GB polynomials

GB mean evaluation error: 2.8 · 108

With Data Scaling: 100 GB polynomials

GB mean evaluation error: 0.025

21-a



Without Data Scaling: 280 GB polynomials

GB mean evaluation error: 2.8 · 108

With Data Scaling: 100 GB polynomials

GB mean evaluation error: 0.025

The Upshot:
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Without Data Scaling: 280 GB polynomials

GB mean evaluation error: 2.8 · 108

With Data Scaling: 100 GB polynomials

GB mean evaluation error: 0.025

The Upshot: Treat your approximate data right!

Then they will treat you approximately right!
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Without Data Scaling: 280 GB polynomials

GB mean evaluation error: 2.8 · 108

With Data Scaling: 100 GB polynomials

GB mean evaluation error: 0.025

The Upshot: Treat your approximate data right!

Then they will treat you approximately right!

Thank you for your attention!
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