ApCoCoA-1:SpecialLinearPrime group: Difference between revisions
From ApCoCoAWiki
StrohmeierB (talk | contribs) New page: === <div id="special_linear_group with prime p">Special Linear Group with prime p</div> === ==== Description ==== For p is prim... |
StrohmeierB (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
=== <div id="special_linear_group with prime p">[[:ApCoCoA:Symbolic data#special_linear_group with prime p|Special Linear Group with | === <div id="special_linear_group with prime p">[[:ApCoCoA:Symbolic data#special_linear_group with prime p|Special Linear Group with Prime p]]</div> === | ||
==== Description ==== | ==== Description ==== | ||
For p is prime has the Special Linear Group with prime p the following presentation: | For p is prime has the Special Linear Group with prime p the following presentation: | ||
Line 7: | Line 7: | ||
not found yet | not found yet | ||
==== Computation ==== | ==== Computation ==== | ||
/*Use the ApCoCoA package ncpoly.*/ | |||
// set the variables k,p,t | |||
// Note that p have to be prime | |||
MEMORY.K:=3; | |||
MEMORY.P:=2; | |||
MEMORY.T:=5; | |||
Use ZZ/(2)[x,y,a,b]; | |||
NC.SetOrdering("LLEX"); | |||
Define CreateRelationsSpeciallineargroupprime() | |||
Relations:=[]; | |||
// add the inverse relations | |||
Append(Relations,[[x,a],[1]]); | |||
Append(Relations,[[a,x],[1]]); | |||
Append(Relations,[[y,b],[1]]); | |||
Append(Relations,[[b,y],[1]]); | |||
// add the relation x^2 = (xy)^3 | |||
Append(Relations,[[x,x],[x,y,x,y,x,y]]); | |||
// add the relation ((((x*y)^4)*x*y^t)^2)*(y^p)*(x^(2k))-1 | |||
Append(Relations,[[x,y,x,y,x,y,x,y,x,y^(MEMORY.T),x,y,x,y,x,y,x,y,x,y^(MEMORY.T),y^(MEMORY.P),x^(2*MEMORY.K)],[1]]); | |||
Return Relations; | |||
EndDefine; | |||
Relations:=CreateRelationsSpeciallineargroupprime(); | |||
Relations; | |||
Gb:=NC.GB(Relations,31,1,100,1000); | |||
Gb; | |||
====Example in Symbolic Data Format==== | ====Example in Symbolic Data Format==== | ||
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> | |||
<vars>x,y,a,b</vars> | |||
<uptoDeg>12</uptoDeg> | |||
<basis> | |||
<ncpoly>x*x-(x*y)^3</ncpoly> | |||
<ncpoly>((((x*y)^4)*x*y^5)^2)*(y^2)*(x^(2*3))-1</ncpoly> | |||
</basis> | |||
<Comment>The partial LLEX Gb has 285 elements</Comment> | |||
<Comment>Special_Linear_group with prime p_k3p2t5</Comment> | |||
</FREEALGEBRA> |
Latest revision as of 21:03, 22 April 2014
Description
For p is prime has the Special Linear Group with prime p the following presentation:
SL_2(p) = <x,y | x^{2} =(xy)^{3},(xy^{4}xy^{t})^{2}y^{p}x^{2k}=1>
Reference
not found yet
Computation
/*Use the ApCoCoA package ncpoly.*/ // set the variables k,p,t // Note that p have to be prime MEMORY.K:=3; MEMORY.P:=2; MEMORY.T:=5; Use ZZ/(2)[x,y,a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsSpeciallineargroupprime() Relations:=[]; // add the inverse relations Append(Relations,[[x,a],[1]]); Append(Relations,[[a,x],[1]]); Append(Relations,[[y,b],[1]]); Append(Relations,[[b,y],[1]]); // add the relation x^2 = (xy)^3 Append(Relations,[[x,x],[x,y,x,y,x,y]]); // add the relation ((((x*y)^4)*x*y^t)^2)*(y^p)*(x^(2k))-1 Append(Relations,[[x,y,x,y,x,y,x,y,x,y^(MEMORY.T),x,y,x,y,x,y,x,y,x,y^(MEMORY.T),y^(MEMORY.P),x^(2*MEMORY.K)],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsSpeciallineargroupprime(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>x,y,a,b</vars> <uptoDeg>12</uptoDeg> <basis> <ncpoly>x*x-(x*y)^3</ncpoly> <ncpoly>((((x*y)^4)*x*y^5)^2)*(y^2)*(x^(2*3))-1</ncpoly> </basis> <Comment>The partial LLEX Gb has 285 elements</Comment> <Comment>Special_Linear_group with prime p_k3p2t5</Comment> </FREEALGEBRA>