ApCoCoA-1:BBSGen.NonStand: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
No edit summary
m insert version info
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
   <title>BBSGen.NonStand</title>
   <title>BBSGen.NonStand</title>
   <short_description> Finds the non-standard indeterminates of the ring <tt>K[c_{ij}]</tt> with respect to the arrow grading. </short_description>
   <short_description>This function computes the non-standard indeterminates from K[c] with respect to the arrow grading. </short_description>
    
    
<syntax>
<syntax>
BBSGen.NonStand(OO:LIST,BO:LIST,N:INT,W:MATRIX):LIST
BBSGen.NonStand(OO,BO,N,W);
BBSGen.NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
</syntax>
</syntax>
   <description>
   <description>
Let W be the weight matrix with respect to the arrow grading(see <ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>).
An indeterminate c_ij in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i) has exactly one  strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c].


<itemize>
<itemize>
<item>@param <em>OO</em> A list of terms representing an order ideal.</item>
  <item>@param The order ideal OO, the border BO the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(<ref>ApCoCoA-1:BBSGen.Wmat|BBSGen.Wmat</ref>). </item>
  <item>@param <em>BO</em> A list of terms representing the border.</item>
  <item>@return List of Indeterminates and their degree with respect to  the arrow grading.  </item>
<item>@param <em>N</em> The number of elements of the Polynomial ring <tt>K[x_1,...x_n]</tt>.</item>
</itemize>
<item>@param <em>W</em> The weight matrix.</item>
 
   
   
  <item>@return A list of non-standard indeterminates from <tt>BBS=K[c_{ij}]</tt> with their degree vectors from field <tt>K</tt>.</item>
</itemize>
<example>
<example>
Use R::=QQ[x[1..2]];


Use R::=QQ[x[1..2]];
OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO); 
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);


OO:=BB.Box([1,1]);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];
BO:=BB.Border(OO);
Use XX;
W:=Wmat(OO,BO,N);
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  




BBSGen.NonStand(OO,BO,N,W);
BBSGen.NonStand(OO,BO,N,W);


[[c[1,3], [R :: 1, R :: 2]],
[[c[1,3], [R :: 1, R :: 2]],  
[c[1,4], [R :: 2, R :: 1]],
[c[1,4], [R :: 2, R :: 1]],
[c[2,3], [R :: 1, R :: 1]],
[c[2,3], [R :: 1, R :: 1]],  
[c[3,4], [R :: 1, R :: 1]]]
[c[3,4], [R :: 1, R :: 1]]]
-------------------------------
 
 


</example>
</example>
   </description>
   </description>
   <types>
   <types>
     <type>bbsmingensys</type>
     <type>borderbasis</type>
    <type>list</type>
   </types>
   </types>
  <see>BBSGen.Wmat</see>
 
<key>Wmat</key>
<see>ApCoCoA-1: BBSGen.Wmat| BBSGen.Wmat</see>
  <key>NonStand</key>
   <key>BBSGen.NonStand</key>
   <key>BBSGen.NonStand</key>
   <key>bbsmingensys.NonStand</key>
   <key>bbsmingensys.NonStand</key>
   <wiki-category>Package_bbsmingensys</wiki-category>
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
</command>
</command>

Latest revision as of 09:50, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.NonStand

This function computes the non-standard indeterminates from K[c] with respect to the arrow grading.

Syntax

BBSGen.NonStand(OO,BO,N,W);
BBSGen.NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST

Description

Let W be the weight matrix with respect to the arrow grading(see BBSGen.Wmat).

An indeterminate c_ij in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i) has exactly one strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c].

  • @param The order ideal OO, the border BO the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).

  • @return List of Indeterminates and their degree with respect to the arrow grading.


Example

Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);   
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);

XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
Use XX;


BBSGen.NonStand(OO,BO,N,W);

[[c[1,3], [R :: 1, R :: 2]], 
[c[1,4], [R :: 2, R :: 1]],
[c[2,3], [R :: 1, R :: 1]], 
[c[3,4], [R :: 1, R :: 1]]]
  




BBSGen.Wmat