ApCoCoA-1:DA.Weight: Difference between revisions
From ApCoCoAWiki
S schuster (talk | contribs) No edit summary |
m insert version info |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Version|1}} | |||
<command> | <command> | ||
<title> | <title>DA.Weight</title> | ||
<short_description>the weight of a differential polynomial</short_description> | <short_description>Computes the weight of a differential polynomial.</short_description> | ||
<syntax> | <syntax> | ||
DA.Weight(F:POLY):INT | |||
</syntax> | </syntax> | ||
<description> | <description> | ||
Computes the weight of the differential polynomial F. | Computes the weight of the differential polynomial <tt>F</tt>. | ||
<itemize> | |||
<item>@param <em>F</em> A differential polynomial. </item> | |||
<item>@return The weight of <tt>F</tt>.</item> | |||
</itemize> | |||
<example> | <example> | ||
Use | Use QQ[x[1..2,0..20]]; | ||
F:=x[1,2]^2x[1,1]3+x[2,1]; | F:=x[1,2]^2x[1,1]3+x[2,1]; | ||
DA.Weight(F); | |||
5 | |||
------------------------------- | ------------------------------- | ||
F:=x[1,2]^2x[1,1]^3+x[2,1]; | F:=x[1,2]^2x[1,1]^3+x[2,1]; | ||
DA.Weight(F); | |||
7 | 7 | ||
------------------------------- | ------------------------------- | ||
</example> | </example> | ||
</description> | </description> | ||
<types> | |||
<type>polynomial</type> | |||
</types> | |||
<key>Weight</key> | |||
<key>DA.Weight</key> | |||
<key>diffalg.Weight</key> | |||
<key>differential.Weight</key> | |||
<wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> | |||
</command> | </command> |
Latest revision as of 10:00, 7 October 2020
This article is about a function from ApCoCoA-1. |
DA.Weight
Computes the weight of a differential polynomial.
Syntax
DA.Weight(F:POLY):INT
Description
Computes the weight of the differential polynomial F.
@param F A differential polynomial.
@return The weight of F.
Example
Use QQ[x[1..2,0..20]]; F:=x[1,2]^2x[1,1]3+x[2,1]; DA.Weight(F); 5 ------------------------------- F:=x[1,2]^2x[1,1]^3+x[2,1]; DA.Weight(F); 7 -------------------------------