ApCoCoA-1:Latte.Ehrhart: Difference between revisions

From ApCoCoAWiki
Jbrandt (talk | contribs)
New page: <command> <title>Latte.Ehrhart</title> <short_description> Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints</short_description>...
 
m insert version info
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
<title>Latte.Ehrhart</title>
<title>Latte.Ehrhart</title>
<short_description> Computes the ehrhart series as a rational funktion for a polyhedral P given by a number of linear constraints</short_description>
<short_description>Computes the ehrhart series as a rational function for a polyhedral P given by a number of linear constraints.</short_description>
<syntax>
<syntax>
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
</syntax>
<syntax>
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN
</syntax>
</syntax>


<description>
<description>
{{ApCoCoAServer}}
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.


<itemize>
<itemize>
Line 17: Line 15:
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
<item>@param <em>LesserEq</em>: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints</item>
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item>@param <em>GreaterEq</em>: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints</item>
<item>@return The Ehrhart-series (or the Taylor series expansion to degree n of the Ehrhart series) of the polyhedral P</item>
</itemize>
The following parameter is optional:
<itemize>
<item>@param <em>Degree</em>: Integer n > 0, when using this parameter, the function computes the Taylor series expansion of the Ehrhart series to degree n</item>
<item>@param <em>Degree</em>: Integer n > 0, when using this parameter, the function computes the Taylor series expansion of the Ehrhart series to degree n</item>
<item>@return The Ehrhart-series (or the Taylor series expansion to degree n of the Ehrhart series) of the polyhedral P</item>
</itemize>
</itemize>


<example>
<example>
Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Ehrhart(Equations, LesserEq, GreaterEq);


-1/(x^3 - 3x^2 + 3x - 1)
-------------------------------
</example>
</example>


</description>
</description>
<types>
<types>
   <type>cocoaserver</type>
   <type>apcocoaserver</type>
</types>
</types>
<key>LattE</key>
<key>Latte</key>
<key>Ehrhart</key>
<key>Ehrhart</key>
<key>Ehrhart-series</key>
<key>Ehrhart-series</key>
<key>Latte.Ehrhart</key>
<key>Latte.Ehrhart</key>
<key>latte.Ehrhart</key>
<wiki-category>ApCoCoA-1:Package_latte</wiki-category>
<wiki-category>Package_latte</wiki-category>
</command>
</command>

Latest revision as of 10:10, 7 October 2020

This article is about a function from ApCoCoA-1.

Latte.Ehrhart

Computes the ehrhart series as a rational function for a polyhedral P given by a number of linear constraints.

Syntax

Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):RATFUN
Latte.Ehrhart(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Degree: INT):RATFUN

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @return The Ehrhart-series (or the Taylor series expansion to degree n of the Ehrhart series) of the polyhedral P

The following parameter is optional:

  • @param Degree: Integer n > 0, when using this parameter, the function computes the Taylor series expansion of the Ehrhart series to degree n

Example

Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Ehrhart(Equations, LesserEq, GreaterEq);

-1/(x^3 - 3x^2 + 3x - 1)
-------------------------------