Package sagbi/SB.IsInSA: Difference between revisions

From ApCoCoAWiki
added see item
m replaced <quotes> tags by real quotes
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{Version|2}}
{{Version|2|[[ApCoCoA-1:SB.IsInSubalgebra]]}}
<command>
<command>
   <title>SB.IsInSA</title>
   <title>SB.IsInSA</title>
   <short_description>This function tests whether a polynomial is in a given Subalgebra.</short_description>
   <short_description>This function tests whether a polynomial is in a given Subalgebra.</short_description>
    
    
   <syntax>
   <syntax>SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL</syntax>
SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL
  </syntax>
   <description>
   <description>
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> and tests whether <tt>f</tt> is an element of <tt>S</tt> using implicitization.
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> and tests whether <tt>f</tt> is an element of <tt>S</tt> using implicitization.
Line 19: Line 17:
S := SB.Subalgebra(R,[x^2,y+z]);
S := SB.Subalgebra(R,[x^2,y+z]);
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
SB.IsInSA(f,S); -- true
SB.IsInSA(f,S); -- true</example>
    </example>
   </description>
   </description>


   <seealso>
   <seealso>
    <see>Package sagbi/SB.Subalgebra</see>
     <see>Package sagbi/SB.IsInSA_SAGBI</see>
     <see>Package sagbi/SB.IsInSA_SAGBI</see>
     <see>Package sagbi/SB.IsInSubalgebra</see>
     <see>Package sagbi/SB.IsInSubalgebra</see>

Latest revision as of 13:22, 29 October 2020

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SB.IsInSubalgebra.

SB.IsInSA

This function tests whether a polynomial is in a given Subalgebra.

Syntax

SB.IsInSA(f: RINGELEM,S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

Description

This function takes a polynomial f and a subalgebra S and tests whether f is an element of S using implicitization.

  • @param f A polynomial

  • @param S A subalgebra, i.e. of type TAGGED("$apcocoa/sagbi.Subalgebra")

  • @return true if f is an element of S and false if not.

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,y+z]);
f := x^4 +2*x^3*y +x^2*y^2 +x^2 +2*x*y +y^2;
SB.IsInSA(f,S); -- true

See also

Package sagbi/SB.Subalgebra

Package sagbi/SB.IsInSA_SAGBI

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInToricRing