Package sagbi/SB.IsInToricRing: Difference between revisions

From ApCoCoAWiki
Created page with "{{Version|2}} <command> <title>SB.IsInToricRing</title> <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>..."
 
m replaced <quotes> tags by real quotes
 
(3 intermediate revisions by one other user not shown)
Line 4: Line 4:
   <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>
   <short_description>This function checks whether a given polynomial is in a toric subalgebra.</short_description>
    
    
   <syntax>
   <syntax>SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL</syntax>
SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL
  </syntax>
   <description>
   <description>
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> generated by a set of terms and checks whether <tt>f</tt> is a toric ring.
This function takes a polynomial <tt>f</tt> and a subalgebra <tt>S</tt> generated by a set of terms and checks whether <tt>f</tt> is a toric ring.
Line 20: Line 18:
f := x^5*y^3*z^2 + x^4*y^2*z^2;
f := x^5*y^3*z^2 + x^4*y^2*z^2;
SB.IsInToricRing(f,S);
SB.IsInToricRing(f,S);
-- true
-- true</example>
    </example>
   </description>
   </description>


Line 37: Line 34:
   </types>
   </types>


   <key> </key>
   <key>IsInToricRing</key>
   <key> </key>
   <key>SB.IsInToricRing</key>
   <key> </key>
   <key>apcocoa/sagbi.IsInToricRing</key>


   <wiki-category>Package </wiki-category>
   <wiki-category>Package sagbi</wiki-category>


</command>
</command>

Latest revision as of 13:22, 29 October 2020

This article is about a function from ApCoCoA-2.

SB.IsInToricRing

This function checks whether a given polynomial is in a toric subalgebra.

Syntax

SB.IsInToricRing(f: RINGELEM, S: TAGGED("$apcocoa/sagbi.Subalgebra")): BOOL

Description

This function takes a polynomial f and a subalgebra S generated by a set of terms and checks whether f is a toric ring.

  • @param f A polynomial

  • @param S A subalgebra of RingOf(f)

  • @return true if f is an element of S and false otherwise.

Example

Use R ::= QQ[x,y,z];
S := SB.Subalgebra(R,[x^2,x*y,y*z]);
f := x^5*y^3*z^2 + x^4*y^2*z^2;
SB.IsInToricRing(f,S);
-- true

See also

Package sagbi/SB.IsInSubalgebra

Package sagbi/SB.IsInSubalgebra_SAGBI

Package sagbi/SB.IsInSA

Package sagbi/SB.IsInSA_SAGBI