ApCoCoA-1:DA.LD: Difference between revisions
From ApCoCoAWiki
No edit summary |
m replaced <quotes> tag by real quotes |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Version|1}} | |||
<command> | <command> | ||
<title>DA.LD</title> | <title>DA.LD</title> | ||
Line 6: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking | <ref>ApCoCoA-1:DA.LD|DA.LD</ref> computes the leading derivative of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking respectively. | ||
<itemize> | <itemize> | ||
<item>@param <em>F</em> A differential polynomial.</item> | <item>@param <em>F</em> A differential polynomial.</item> | ||
<item>@return The leading derivative of F.</item> | <item>@return The leading derivative of <tt>F</tt>.</item> | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
Use | Use QQ[x[1..2,0..20]]; | ||
Use | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd")); | ||
F:=x[1,2]^2*x[1,1]-x[2,4]^3; | F:=x[1,2]^2*x[1,1]-x[2,4]^3; | ||
DA.LD(F); | DA.LD(F); | ||
Line 24: | Line 25: | ||
<type>polynomial</type> | <type>polynomial</type> | ||
</types> | </types> | ||
<see>DA.DiffTO</see> | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> | ||
<key>LD</key> | <key>LD</key> | ||
Line 30: | Line 31: | ||
<key>diffalg.LD</key> | <key>diffalg.LD</key> | ||
<key>differential.LD</key> | <key>differential.LD</key> | ||
<wiki-category>Package_diffalg</wiki-category> | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> | ||
</command> | </command> |
Latest revision as of 13:30, 29 October 2020
This article is about a function from ApCoCoA-1. |
DA.LD
Computes the leading derivative of a differential polynomial.
Syntax
DA.LD(F:POLY):POLY
Description
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectively.
@param F A differential polynomial.
@return The leading derivative of F.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd")); F:=x[1,2]^2*x[1,1]-x[2,4]^3; DA.LD(F); ------------------------------- x[2,4] -------------------------------