ApCoCoA-1:Num.AppKer: Difference between revisions

From ApCoCoAWiki
Stadler (talk | contribs)
No edit summary
m replaced <quotes> tag by real quotes
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
<title>Num.AppKer</title>
<title>Num.AppKer</title>
Line 27: Line 28:
-------------------------------
-------------------------------
Mat([
Mat([
   [<quotes>-0.408</quotes>, <quotes>0.816</quotes>, <quotes>-0.408</quotes>]
   ["-0.408", "0.816", "-0.408"]
])
])
-------------------------------
-------------------------------
Mat([
Mat([
   [<quotes>-0.000</quotes>],
   ["-0.000"],
   [<quotes>0.000</quotes>],
   ["0.000"],
   [<quotes>0.000</quotes>]
   ["0.000"]
])
])
-------------------------------
-------------------------------
Line 46: Line 47:


<seealso>
<seealso>
  <see>Num.SVD</see>
  <see>ApCoCoA-1:Num.SVD|Num.SVD</see>
</seealso>
</seealso>


Line 53: Line 54:
<key>numerical.AppKer</key>
<key>numerical.AppKer</key>


<wiki-category>Package_numerical</wiki-category>
<wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
</command>
</command>

Latest revision as of 13:46, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.AppKer

Calculates the approximate kernel of a matrix.

Syntax

Num.AppKer(Matrix:MAT, Epsilon:RAT):MAT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Calculates the approximate Kernel of a Matrix with respect to the residual error Epsilon.

  • @param Matrix A rational matrix.

  • @param Epsilon The target residual error.

  • @return The approximate kernel.

Example

M := Mat([[1,2,3],[4,5,6],[7,8,9]]);
AppKer := Num.AppKer(M,0.01);
Dec(AppKer,3);
Dec(M * Transposed(AppKer),3);
-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Mat([
  ["-0.408", "0.816", "-0.408"]
])
-------------------------------
Mat([
  ["-0.000"],
  ["0.000"],
  ["0.000"]
])
-------------------------------



See also

Num.SVD