ApCoCoA-1:Num.IsAVI: Difference between revisions

From ApCoCoAWiki
Stadler (talk | contribs)
No edit summary
m replaced <quotes> tag by real quotes
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
   <command>
   {{Version|1}}
     <title>Numerical.IsAVI</title>
<command>
     <short_description>Checks if a given set of polynomials vanishes at a given set of points</short_description>
     <title>Num.IsAVI</title>
     <short_description>Checks if a given set of polynomials vanishes at a given set of points.</short_description>
<syntax>
<syntax>
Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT,B:INT];
Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT or RAT,B:INT or RAT];
</syntax>
</syntax>
     <description>
     <description>
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<par/>
<par/>
Checks if a set of polynomials vanishes at a set of points epsilon approximately. The polynomials are preprocessed first to have norm 1.
This command checks if a set of polynomials vanishes at a set of points <tt>Epsilon</tt> approximately. The polynomials are preprocessed first to have norm 1.
<itemize>
<itemize>
<item>@param <em>Polys</em> A list of polynomials.</item>
<item>@param <em>Polys</em> A list of polynomials.</item>
<item>@param <em>Points</em> A matrix containing the points to check.</item>
<item>@param <em>Points</em> A matrix containing the points to check.</item>
<item>@param <em>Epsilon</em> Rational number</item>
<item>@param <em>Epsilon</em> Rational number</item>
<item>@return A number A which specifies how well the points vanish on average and a number B which contains the maximal evaluation value</item>
<item>@return A number <tt>A</tt> which specifies how well the points vanish on average and a number <tt>B</tt> which contains the maximal evaluation value</item>
</itemize>
</itemize>


<example>
<example>
Num.IsAVI([x[1]+1,x[1]^2],[[0]],0.1);
Use P::=Q[x,y,z];
Dec(Num.IsAVI([x+1,x^2],[[0]],0.1),3);
-- CoCoAServer: computing Cpu Time = 0
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
-------------------------------
[1/2, 1]
["0.353", "0.707"]
-------------------------------
-------------------------------
</example>
</example>
     </description>
     </description>
     <seealso>
     <seealso>
       <see>Introduction to CoCoAServer</see>
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
     </seealso>
     </seealso>
     <types>
     <types>
Line 34: Line 36:
     <key>Num.IsAvi</key>
     <key>Num.IsAvi</key>
     <key>IsAvi</key>
     <key>IsAvi</key>
     <wiki-category>Package_numerical</wiki-category>
    <key>numerical.isavi</key>
     <wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
   </command>
   </command>

Latest revision as of 13:47, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.IsAVI

Checks if a given set of polynomials vanishes at a given set of points.

Syntax

Num.IsAVI(Polys:LIST, Points:MAT, Epsilon:RAT):[A:INT or RAT,B:INT or RAT];

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This command checks if a set of polynomials vanishes at a set of points Epsilon approximately. The polynomials are preprocessed first to have norm 1.

  • @param Polys A list of polynomials.

  • @param Points A matrix containing the points to check.

  • @param Epsilon Rational number

  • @return A number A which specifies how well the points vanish on average and a number B which contains the maximal evaluation value

Example

Use P::=Q[x,y,z];
Dec(Num.IsAVI([x+1,x^2],[[0]],0.1),3);
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
["0.353", "0.707"]
-------------------------------

See also

Introduction to CoCoAServer