ApCoCoA-1:BBSGen.LinIndepGen: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
New page: <command> <title>BBSGen.LinIndepGen</title> <short_description>This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the inde...
 
m insert version info
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
   <title>BBSGen.LinIndepGen</title>
   <title>BBSGen.LinIndepGen</title>
   <short_description>This function computes the equivalent indeterminates modulo m^2 of BBS where m is the maximal ideal generated by the indeterminates {c_11,...,c_\mu \nu} .</short_description>
   <short_description>Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). This function computes the equivalent indeterminates from K[c_11,...,c_Mu Nu] modulo m^2where m is the maximal ideal generated by the indeterminates {c_11,...,c_Mu Nu} from the coordinate ring of the border basis scheme. As out-put, it gives every equivalence class as a list.</short_description>
    
    
<syntax>
<syntax>
Line 8: Line 9:
</syntax>
</syntax>
   <description>
   <description>
This function computes the equivalent indeterminates in the cotangent space m\m^2 of BBS and gives these equivalent indeterminates in one list(if they are not equivalent to 0) and additionally the K-linearly independent ones. The base ring can be K[x_1,..,x_n].
 
<itemize>
<itemize>
   <item>@param  The order ideal OO.</item>
   <item>@param  The order ideal OO.</item>
Line 18: Line 19:
Use R::=QQ[x,y];
Use R::=QQ[x,y];
OO:=[1,x,y,xy];
OO:=[1,x,y,xy];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);


BBSGen.LinIndepGen(OO);  
BBSGen.LinIndepGen(OO);  
Line 42: Line 46:




<see> BBSGen.InFinder</see>


<see> BBSGen.PurPow</see>


   
<see>ApCoCoA-1: BBSGen.PurPow| BBSGen.PurPow</see>
   <key>bbsmingensys.Wmat</key>
 
   <wiki-category>Package_bbsmingensys</wiki-category>
  <key>LinIndepGen</key>
  <key>BBSGen.LinIndepGen</key>
   <key>bbsmingensys.LinIndepGen</key>
   <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category>
</command>
</command>

Latest revision as of 09:50, 7 October 2020

This article is about a function from ApCoCoA-1.

BBSGen.LinIndepGen

Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). This function computes the equivalent indeterminates from K[c_11,...,c_Mu Nu] modulo m^2, where m is the maximal ideal generated by the indeterminates {c_11,...,c_Mu Nu} from the coordinate ring of the border basis scheme. As out-put, it gives every equivalence class as a list.

Syntax

BBSGen.LinIndepGen(OO):
BBSGen.LinIndepGen(OO:LIST):LIST

Description


  • @param The order ideal OO.

  • @return The list of classes of indeterminates modulo m^2.


Example

Use R::=QQ[x,y];
OO:=[1,x,y,xy];
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);

BBSGen.LinIndepGen(OO); 


[[[3, 3], [1, 1]], [[1, 2], [2, 4]], [[4, 3], [2, 1]], [[2, 2]], [[3, 1]], [[4, 4], [3, 2]], [4, 2], [4, 1]]

Class:=BBSGen.LinIndepGen(OO); 

Use BBS::=CoeffRing[c[1..Mu,1..Nu]]; 

BBSGen.IndFinder(Class,Mu,Nu);

[[c[3,3], c[1,1]], [c[1,2], c[2,4]], [c[4,3], c[2,1]], c[2,2], c[3,1], [c[4,4], c[3,2]], c[4,1], c[4,2]]
-------------------------------
-------------------------------




BBSGen.PurPow