ApCoCoA-1:DA.PseudoAutoReduce: Difference between revisions

From ApCoCoAWiki
m Bot: Category moved
m replaced <quotes> tag by real quotes
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Version|1}}
<command>
<command>
     <title>DA.PseudoAutoReduce</title>
     <title>DA.PseudoAutoReduce</title>
Line 6: Line 7:
</syntax>
</syntax>
<description>
<description>
<ref>DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces
<ref>ApCoCoA-1:DA.PseudoAutoReduce|DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces
to zero with respect to the returned list.
to zero with respect to the returned list.
<itemize>
<itemize>
Line 14: Line 15:
<example>
<example>
Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));
DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]);
DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]);
-------------------------------
-------------------------------
Line 24: Line 25:
<type>polynomial</type>
<type>polynomial</type>
</types>
</types>
<see>DA.DiffTO</see>
<see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see>
<see>DA.PseudoReduce</see>
<see>ApCoCoA-1:DA.PseudoReduce|DA.PseudoReduce</see>


<key>PseudoAutoReduce</key>
<key>PseudoAutoReduce</key>

Latest revision as of 13:30, 29 October 2020

This article is about a function from ApCoCoA-1.

DA.PseudoAutoReduce

Computes a pseudo reduced list of differential polynomials.

Syntax

DA.PseudoAutoReduce(G:LIST):LIST

Description

DA.PseudoAutoReduce returns a pseudo reduced list, i.e., every element of G reduces

to zero with respect to the returned list.

  • @param G List of differential polynomials.

  • @return An autoreduced list of differential polynomials.

Example

Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));
DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]);
-------------------------------
[x[1,0]^2 + 3x[1,0], x[2,0] + x[1,1]^4]
-------------------------------

DA.DiffTO

DA.PseudoReduce