ApCoCoA-1:Num.EigenValues: Difference between revisions

From ApCoCoAWiki
added to category Package_Numerical
m replaced <quotes> tag by real quotes
 
(25 intermediate revisions by 9 users not shown)
Line 1: Line 1:
   <command>
   {{Version|1}}
     <title>Numerical.EigenValues</title>
<command>
     <short_description>Eigenvalues of a matrix</short_description>
     <title>Num.EigenValues</title>
     <short_description>Computes the eigenvalues of a matrix.</short_description>
<syntax>
<syntax>
$numerical.EigenValues(A:Matrix):List
Num.EigenValues(A:MAT):MAT
</syntax>
</syntax>
     <description>
     <description>
This function returns a matrix, containing numerical approximation to A's eigenvalues.  
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
Therefore the input matrix A has to be rectangular!
<par/>
It is implemented in the ApCoCoA server, so you need a running server. It was not implemented in version 0.99.4 or previous. Also please keep in mind this method is based on blas/Lapack's eigenvalue solver and uses floating point arithmetic. This is not an exact, algebraic method!
This function computes the approximate complex eigenvalues of the matrix <tt>A</tt>.
The output contains of a matrix B, where the number of rows contains one of A's eigenvalues. The first column contains the eigenvalue's real part, the second the imaginary.
 
<itemize>
<item>@param <em>A</em> A quadratic matrix with rational entries.</item>
<item>@return The return value is a matrix with two rows. Each column of this matrix represents one approximate complex eigenvalue of <tt>A</tt>, i.e. the first entry of a column is the real part and the second entry of the same column is the imaginary part of one complex eigenvalue.</item>
</itemize>
 
<example>
<example>
Use P::=QQ[x,y,z];
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]);
A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]);
Numerical.EigenValues(A);
Dec(Num.EigenValues(A),3);
-- CoCoAServer: computing Cpu Time = 0.0049
-- CoCoAServer: computing Cpu Time = 0.015
-------------------------------
-------------------------------
Mat([
Mat([
   [2038617447977453/70368744177664, 1593056728295919/4503599627370496, 0, 1717983664400761/562949953421312],
   ["28.970", "-13.677", "0.353", "0.353"],
   [-3850002255576293/281474976710656, 1593056728295919/4503599627370496, 0, -1717983664400761/562949953421312]
   ["0", "0", "3.051", "-3.051"]
])
])
-------------------------------
-------------------------------
</example>
</example>
     </description>
     </description>
     <seealso>
     <seealso>
       <see>Introduction to CoCoAServer</see>
       <see>ApCoCoA-1:Introduction to CoCoAServer|Introduction to CoCoAServer</see>
       <see>Numerical.QR</see>
       <see>ApCoCoA-1:Num.QR|Num.QR</see>
       <see>Numerical.SVD</see>
       <see>ApCoCoA-1:Num.SVD|Num.SVD</see>
       <see>Numerical.EigenValuesAndVectors</see>
       <see>ApCoCoA-1:Num.EigenValuesAndVectors|Num.EigenValuesAndVectors</see>
       <see>Numerical.EigenValuesAndAllVectors</see>
       <see>ApCoCoA-1:Num.EigenValuesAndAllVectors|Num.EigenValuesAndAllVectors</see>
     </seealso>
     </seealso>
     <wiki-category>Package_Numerical</wiki-category>
    <types>
      <type>apcocoaserver</type>
      <type>matrix</type>
    </types>
    <key>Num.EigenValues</key>
    <key>EigenValues</key>
    <key>numerical.eigenvalues</key>
     <wiki-category>ApCoCoA-1:Package_numerical</wiki-category>
   </command>
   </command>

Latest revision as of 13:47, 29 October 2020

This article is about a function from ApCoCoA-1.

Num.EigenValues

Computes the eigenvalues of a matrix.

Syntax

Num.EigenValues(A:MAT):MAT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function computes the approximate complex eigenvalues of the matrix A.

  • @param A A quadratic matrix with rational entries.

  • @return The return value is a matrix with two rows. Each column of this matrix represents one approximate complex eigenvalue of A, i.e. the first entry of a column is the real part and the second entry of the same column is the imaginary part of one complex eigenvalue.


Example

Use P::=QQ[x,y,z];

A:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10],[7,5,3,2]]);
Dec(Num.EigenValues(A),3);
-- CoCoAServer: computing Cpu Time = 0.015
-------------------------------
Mat([
  ["28.970", "-13.677", "0.353", "0.353"],
  ["0", "0", "3.051", "-3.051"]
])
-------------------------------

See also

Introduction to CoCoAServer

Num.QR

Num.SVD

Num.EigenValuesAndVectors

Num.EigenValuesAndAllVectors