ApCoCoA-1:BB.HomBBscheme: Difference between revisions
From ApCoCoAWiki
Reviewed text |
m insert version info |
||
(18 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Version|1}} | |||
<command> | <command> | ||
<title>BB.HomBBscheme</title> | |||
<short_description>Computes the defining equations of a homogeneous border basis scheme.</short_description> | |||
<syntax> | <syntax> | ||
BB.HomBBscheme(OO:LIST):IDEAL | |||
</syntax> | </syntax> | ||
<description> | |||
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. | Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices. | ||
<itemize> | |||
<see> | <item>@param <em>OO</em> A list of terms representing an order ideal. The second element of <tt>OO</tt> must be a non-constant polynomial.</item> | ||
<item>@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | |||
</itemize> | |||
</description> | |||
<types> | |||
<type>borderbasis</type> | |||
</types> | |||
<see>ApCoCoA-1:BB.BBscheme|BB.BBscheme</see> | |||
<key>HomBBscheme</key> | |||
<key>BB.HomBBscheme</key> | |||
<key>borderbasis.HomBBscheme</key> | |||
<wiki-category>ApCoCoA-1:Package_borderbasis</wiki-category> | |||
</command> | </command> |
Latest revision as of 09:41, 7 October 2020
This article is about a function from ApCoCoA-1. |
BB.HomBBscheme
Computes the defining equations of a homogeneous border basis scheme.
Syntax
BB.HomBBscheme(OO:LIST):IDEAL
Description
Computes the defining equations of the homogeneous border basis scheme using the commutators of the generic homogeneous multiplication matrices.
@param OO A list of terms representing an order ideal. The second element of OO must be a non-constant polynomial.
@return A list of polynomials representing the defining equations of the homogeneous border basis scheme. The polynomials will belong to the ring BBS=K[c_{ij}].