|
|
Line 1: |
Line 1: |
| <command>
| | |
| <title>Gbmr.PRGB</title>
| |
| <short_description>
| |
| Compute reduced Groebner basis of right ideal.
| |
| </short_description>
| |
| <syntax>
| |
| Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
| |
| </syntax>
| |
| <description>
| |
| <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
| |
| <itemize>
| |
| <item>@param <em>Alphabet</em>: Alphabet of the rewriting system.</item>
| |
| <item>@param <em>Rules</em>: Rewriting rules of the rewriting system.</item>
| |
| <item>@param <em>Order</em>: Ordering of monoids.</item>
| |
| <item>@param <em>F</em>: List of generators.</item>
| |
| <item>@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.</item>
| |
| </itemize>
| |
| <example>
| |
| Alphabet := "abc";
| |
| Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
| |
| Order := "LLEX";
| |
| F1 := [[1,"a"], [1,"b"], [1,"c"]];
| |
| F := [F1];
| |
| Gbmr.PRGB(Alphabet, Rules, Order, F);
| |
| -------------------------------
| |
| [1+-1b,
| |
| 1+1c+1a,
| |
| 1c+1b+1c,
| |
| 1c+1b+1cc,
| |
| 1+1a+1ca,
| |
| 1b+1cc+1bc,
| |
| 1+1ca+1ba]
| |
| </example>
| |
| </description>
| |
| <seealso>
| |
| <see>Introduction to CoCoAServer</see>
| |
| </seealso>
| |
| <types>
| |
| <type>apcocoaserver</type>
| |
| <type>groebner</type>
| |
| </types>
| |
| <key>gbmr.PRGB</key>
| |
| <key>PRGB</key>
| |
| <wiki-category>Package_gbmr</wiki-category>
| |
| </command>
| |