ApCoCoA-1:Gbmr.PRGB: Difference between revisions

From ApCoCoAWiki
No edit summary
Undo revision 9835 by 132.231.54.1 (Talk)
 
Line 1: Line 1:
<command>
 
<title>Gbmr.PRGB</title>
<short_description>
Compute reduced Groebner basis of right ideal.
</short_description>
<syntax>
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
</syntax>
<description>
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.
<itemize>
<item>@param <em>Alphabet</em>: Alphabet of the rewriting system.</item>
<item>@param <em>Rules</em>: Rewriting rules of the rewriting system.</item>
<item>@param <em>Order</em>: Ordering of monoids.</item>
<item>@param <em>F</em>: List of generators.</item>
<item>@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.</item>
</itemize>
<example>
Alphabet := "abc";
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]];
Order := "LLEX";
F1 := [[1,"a"], [1,"b"], [1,"c"]];
F := [F1];
Gbmr.PRGB(Alphabet, Rules, Order, F);
-------------------------------
[1+-1b,
1+1c+1a,
1c+1b+1c,
1c+1b+1cc,
1+1a+1ca,
1b+1cc+1bc,
1+1ca+1ba]
</example>
</description>
<seealso>
<see>Introduction to CoCoAServer</see>
</seealso>
<types>
<type>apcocoaserver</type>
<type>groebner</type>
</types>
<key>gbmr.PRGB</key>
<key>PRGB</key>
<wiki-category>Package_gbmr</wiki-category>
</command>

Latest revision as of 10:46, 9 July 2009