ApCoCoA-1:Symbolic data Computations: Difference between revisions
From ApCoCoAWiki
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
/*Use the ApCoCoA package gbmr.*/ | /*Use the ApCoCoA package gbmr.*/ | ||
-- See NCo.BGB for more details on the parameters DB, LB and OFlag. | |||
Define BS(M,N,DB,LB,OFlag) | |||
$apcocoa/gbmr.SetX("aAbB"); | |||
$apcocoa/gbmr.SetOrdering("LLEX"); | |||
G:= [["aA",""],["Aa",""],["bB",""],["bB",""]]; | |||
BA:= "b"; | |||
AB:= "b"; | |||
For I:= 1 To ARGV[1] Do | For I:= 1 To ARGV[1] Do | ||
BA:= BA + "a"; | |||
EndFor; | EndFor; | ||
For I:= 1 To ARGV[2] Do | For I:= 1 To ARGV[2] Do | ||
AB:= "a" + Ab; | |||
EndFor; | EndFor; | ||
Append(G,[BA,AB]); | |||
Return $apcocoa/gbmr.BGB(G,DB,LB,OFlag); | |||
EndDefine; | EndDefine; |
Revision as of 13:24, 18 June 2013
Computation Examples for Non-abelian Groups
Computations of Baumslag groups
Recall that the Baumslag-Solitar groups have the following presentation
BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows.
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a[1..2],b[1..2]]; NC.SetOrdering("LLEX"); A1:=[[a[1],a[2]],[1]]; A2:=[[a[2],a[1]],[1]]; B1:=[[b[1],b[2]],[1]]; B2:=[[b[2],b[1]],[1]]; -- Relation ba^2=a^3b. Change 2 and 3 in "()" to make another relation R:=[[b[1],a[1]^(2)],[a[1]^(3),b[1]]]; G:=[A1,A2,B1,B2,R]; -- Enumerate a partial Groebner basis (see NC.GB for more details) NC.GB(G,31,1,100,1000);
/*Use the ApCoCoA package gbmr.*/ -- See NCo.BGB for more details on the parameters DB, LB and OFlag. Define BS(M,N,DB,LB,OFlag) $apcocoa/gbmr.SetX("aAbB"); $apcocoa/gbmr.SetOrdering("LLEX"); G:= [["aA",""],["Aa",""],["bB",""],["bB",""]]; BA:= "b"; AB:= "b"; For I:= 1 To ARGV[1] Do BA:= BA + "a"; EndFor; For I:= 1 To ARGV[2] Do AB:= "a" + Ab; EndFor; Append(G,[BA,AB]); Return $apcocoa/gbmr.BGB(G,DB,LB,OFlag); EndDefine;