ApCoCoA-1:Dicyclic groups: Difference between revisions

From ApCoCoAWiki
F lorenz (talk | contribs)
Xiu (talk | contribs)
No edit summary
Line 5: Line 5:
   Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>
   Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>


(Reference: Coxeter, H. S. M. (1974), "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University)
==== Reference ====
Coxeter, H. S. M., "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University, 1974.


==== Computation ====
==== Computation ====
Line 13: Line 14:
   // Number of Dicyclic group (note that  the order is 4N)
   // Number of Dicyclic group (note that  the order is 4N)
   MEMORY.N:=5;
   MEMORY.N:=5;
 
    
    
   Use ZZ/(2)[a,b];
   Use ZZ/(2)[a,b];
   NC.SetOrdering("LLEX");
   NC.SetOrdering("LLEX");
 
   Define CreateRelationsDicyclic()
   Define CreateRelationsDicyclic()
     Relations:=[];
     Relations:=[];
      
      
     // add the relation a^{n} = b^2
     // Add the relation a^{n} = b^2
     Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
     Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
      
      
     // add the relation a^{2n} = 1
     // Add the relation a^{2n} = 1
     Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
     Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
    
    
     // add the relation b^{-1}ab = a^{-1}
     // Add the relation b^{-1}ab = a^{-1}
     Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]);
     Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]);
 
     Return Relations;
     Return Relations;
   EndDefine;
   EndDefine;

Revision as of 07:38, 23 August 2013

Description

The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1.

 Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>

Reference

Coxeter, H. S. M., "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University, 1974.

Computation

 /*Use the ApCoCoA package ncpoly.*/
 
 // Number of Dicyclic group (note that  the order is 4N)
 MEMORY.N:=5;
 
 Use ZZ/(2)[a,b];
 NC.SetOrdering("LLEX");
 
 Define CreateRelationsDicyclic()
   Relations:=[];
   
   // Add the relation a^{n} = b^2
   Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
   
   // Add the relation a^{2n} = 1
   Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
  
   // Add the relation b^{-1}ab = a^{-1}
   Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]);
 
   Return Relations;
 EndDefine;