ApCoCoA-1:Other1 groups: Difference between revisions
From ApCoCoAWiki
No edit summary |
|||
Line 11: | Line 11: | ||
/*Use the ApCoCoA package ncpoly.*/ | /*Use the ApCoCoA package ncpoly.*/ | ||
//K is congruent to 3 mod 6 | |||
MEMORY.K:=3; | |||
// a is invers to c and b is invers to d | // a is invers to c and b is invers to d | ||
Use ZZ/(2)[a,b,c,d]; | Use ZZ/(2)[a,b,c,d]; | ||
Line 26: | Line 28: | ||
Append(Relations,[[a,a,d,d,d,d,d,d],[1]]); | Append(Relations,[[a,a,d,d,d,d,d,d],[1]]); | ||
// add the relation (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1 | // add the relation (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1 | ||
Append(Relations,[[a,d,a,d,a,d,a,d,d,a,b | Append(Relations,[[a,d,a,d,a,d,a,d,d,a,b^MEMORY.K,c,b],[1]]); | ||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsOther1(); | Relations:=CreateRelationsOther1(); | ||
Gb:=NC.GB(Relations,31,1,100,1000); |
Revision as of 09:48, 23 September 2013
Description
This group has the following representation:
G = <a,b | a^{2}b^{-6} = (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1>
where k is congruent to 3 mod 6.
Reference
No reference available
Computation
/*Use the ApCoCoA package ncpoly.*/ //K is congruent to 3 mod 6 MEMORY.K:=3; // a is invers to c and b is invers to d Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsOther1() Relations:=[]; // add the invers relations ac = ca = bd = db = 1 Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation a^{2}b^{-6} = aadddddd = 1 Append(Relations,[[a,a,d,d,d,d,d,d],[1]]); // add the relation (ab^{-1})^{3}ab^{-2}ab^{k}a^{-1}b = 1 Append(Relations,[[a,d,a,d,a,d,a,d,d,a,b^MEMORY.K,c,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther1(); Gb:=NC.GB(Relations,31,1,100,1000);