Package zerodim: Difference between revisions

From ApCoCoAWiki
LongLe (talk | contribs)
LongLe (talk | contribs)
Line 31: Line 31:


=== List of main functions ===
=== List of main functions ===
Given a polynomial ring <code>P</code> and a list <code>F</code> of polynomials in <code>P</code>, one can compute the reduced SAGBI basis of <math>K</math>[<code>F</code>] (with respect to the term ordering given by <code>P</code>) using the function [[/SB.SAGBI/]] - as long as a finite one exists.
 
[[/MinQuotIdeal/]]
<pre>
MinQuotIdeal(P, I, J): computes a min. homog. system
          of generators of homog. ideal (I+J)/I.
    input: P=K[x[1..N]], I and J homog. ideals of P
    output: list of polys
</pre>
[[/AffineNoetherDiff/]]
<pre>
AffineNoetherDiff(P, I): computes a generating system";
          of the Noether different of algebra R/K, R=P/I";
    input: P=K[x[1..N]], I an ideal of P";
    output: list of polys";
</pre>
[[/NoetherDifferent/]]
<pre>
NoetherDifferent(P, I): computes a min.homog. gen. system
          of the Noether different of algebra R/K, R=P/I.
    input: P=K[x[1..N]], I an homog. ideal of P
    output: list of polys
</pre>
[[/NoetherDifferentRel/]]
<pre>
NoetherDifferentRel(P, Ix): computes a min.homog. gen. system
          of the Noether different of R/K[x[0]], R=P/Ix.
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
    output: list of polys
</pre>
[[/HilbertNoetherDiff/]]
<pre>
HilbertNoetherDiff(P, I): computes the Hilbert function
          of the Noether different of R/K, R=P/I.
    input: P=K[x[1..N]], I an homog. ideal of P
    output: the Hilbert function
</pre>
[[/HilbertNoetherDiffRel/]]
<pre>
HilbertNoetherDiffRel(P, Ix): computes the Hilbert function
          of the Noether different of R/K[x[0]], R=P/Ix.
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
    output: the Hilbert function
</pre>
[[/AffineKaehlerDiff/]]
<pre>
AffineKaehlerDiff(P,I,m): computes a generating system
          of the m-th Kaehler different of algebra R/K, R=P/I.
    input: P=K[x[1..N]], I an ideal of P, m non-neg integer
    output: list of polys
</pre>
[[/KaehlerDifferent/]]
<pre>
KaehlerDifferent(P,I,m): computes a min.homog.gen. system
          of the m-th Kaehler different of algebra R/K, R=P/I.
    input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
    output: list of polys
</pre>
[[/KaehlerDifferentRel/]]
<pre>
KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system
          of the Kaehler different of R/K[x[0]], R=P/Ix.
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
    output: list of polys
</pre>
[[/HilbertKaehlerDiff/]]
<pre>
HilbertKaehlerDiff(P,I,m): computes the Hilbert function
          of the m-th Kaehler different of R/K, R=P/I.
    input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
    output: the Hilbert function
</pre>
[[/HilbertKaehlerDiffRel/]]
<pre>
HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function
          of the Kaehler different of R/K[x[0]], R=P/Ix.
    input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
    output: the Hilbert function
</pre>
[[/AffBMAlgo/]]
<pre>
AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators]
          for a 0-dim ideal with its primary components LX.
    input: P=K[x[1..N]], LX list of 0-dim primary ideals
            q_j associated to a 0-dim ideal of P
            O list of K-bases of P/q_j
    output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j)
</pre>
[[/DedekindDifferentRel/]]
<pre>
DedekindDifferentRel(P,Points): computes a min.homog.gen. system
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
    input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
    output: list of polys
</pre>
[[/HilbertDedekindDiffRel/]]
<pre>
HilbertDedekindDiffRel(P,Points): computes the Hilbert function
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
    input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
    output: the Hilbert function
</pre>
[[/KaehlerDiffModule/]]
<pre>
<pre>
SB.SAGBI(F);
KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form
          has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}.
    input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer
    output: submodule with generators
</pre>
</pre>
Note that this function probably runs into an infinite loop if no finite SAGBI basis exists. This can be avoided using the function [[/SB.SAGBITimeout/]]. Given a positive integer <code>s</code>, one can type in
[[/HilbertKDM/]]
<pre>
<pre>
SB.SAGBITimeout(F,s);
HilbertKDM(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form.
    input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1
    output: HF of Omega^m(R/K)
</pre>
</pre>
which does the same as <code>SB.SAGBI(F)</code>, but throws an error if the computation is not finished within <code>s</code> seconds.
[[/KDMOfPoints/]]
Given a polynomial <code>f</code> and a list of polynomials <code>G</code>, the function [[/SB.ReductionStep/]] can be used to compute a polynomial <code>g</code> with <code>f</code><math>{\xrightarrow{G}}_{\rm s}</math><code>g</code>.
<pre>
<pre>
SB.ReductionStep(f,G);
KDMOfPoints(P,Points,m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
    input: P=K[x[1..N]], Points=list of points, m non-neg integer
    output: submodule with generators
</pre>
[[/KDMOfProjectivePoints/]]
<pre>
KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
    input: P=K[x[1..N]], Points=list of projective points,
            m non-neg integer
    output: submodule with generators
</pre>
[[/KDMRel/]]
<pre>
KDMRel(P, Ix, m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form of R/K[x[0]]
          has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}.
    input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer
    output: submodule with generators
</pre>
[[/HilbertKDMRel/]]
<pre>
HilbertKDMRel(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form of R/K[x[0]].
    input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer";
    output: HF of Omega^m(R/K[x_0])
</pre>
</pre>


=== The Subalgebra Data Type ===
=== The Subalgebra Data Type ===

Revision as of 20:40, 17 November 2022

This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see Category:ApCoCoA-1:Package ZeroDim.

This page describes the zerodim package. The package contains various functions for computing algebraic invariants of zero-dimensional schemes and related computations. For a complete list of functions, see Category:Package zerodim.


Algebraic Invariants

Let K be a field, let P=K[x1,,xn] be the polynomial ring over K in n indeterminates, and let I be a 0-dimensional ideal of P and R=P/I. Then I defines a 0-dimensional scheme X in the affine n-space. Consider the canonical multiplication map

μ:Re=RKRR,(f,g)fg

and its kernel J=Ker(μ). Then J/J2 is a finitely generated R-module and AnnRe(J) is an ideal of the enveloping algebra Re.

  • The ideal ϑN(R/K):=μ(AnnRe(J)) is called the Noether different of the algebra R/K.
  • The R-module ΩR/K1:=J/J2 is called the module of Kaehler differential 1-forms of the algebra R/K.
  • The K-linear map d:RΩR/K1,ff11f+J2, is called the universal derivation of the algebra R/K.
  • For m0, the exterior power ΩR/Km:=RmΩR/K1 is called the module of Kaehler differential m-forms of the algebra R/K.
  • For m0 the m-th Fitting ideal ϑX(m)(R/K) of the module of Kaehler differential 1-forms ΩR/K1 is called the Kaehler different of the algebra R/K.

More generally, for any K-algebra T/S, we can define the Noether different, module of Kaehler differential m-forms, Kaehler different of T/S analogously. In particular, if T/S is graded, then all these invariants are also graded.

Now let us embed the scheme X in the projective n-space via XD+(x0)n, where x0 is a new indeterminate. Set S:=P[x0]=K[x0,,xn] and equip S with the standard grading. The homogeneous vanishing ideal of X is the homogenization of I with respect to x0 and denoted by IX, and the homogeneous coordinate ring of X is the graded 1-dimensional ring RX=S/IX. In this case K[x0] is the Noetherian normalization of RX, and hence we can define the above invariants for the graded algebra RX/K[x0]. Moreover, we have the following further invariants.

  • The graded RX-module ωRX=HomK[x0](R,K[x0])(1) is called the canonical module of the algebra RX/K[x0].
  • The graded locolization Qh(RX) of RX at x0 is called the homogeneous ring of quotients of RX.
  • When the scheme X is reduced (more general, locally Gorenstein), there is an injection ωRXQh(RX) and the inverse of ωRX in Qh(RX) is called the Dedekind different of RX/K[x0].

Many interesting properties of the scheme X are reflexed by the algebraic structure of the above invariants.

Package Description

The zerodim package provides functions for computing the introduced invariants of zero-dimensional schemes. In the graded case the package also provides functions for computations of the Hilbert functions of these invariants.

List of main functions

MinQuotIdeal

MinQuotIdeal(P, I, J): computes a min. homog. system
          of generators of homog. ideal (I+J)/I.
     input: P=K[x[1..N]], I and J homog. ideals of P
     output: list of polys

AffineNoetherDiff

AffineNoetherDiff(P, I): computes a generating system";
          of the Noether different of algebra R/K, R=P/I";
     input: P=K[x[1..N]], I an ideal of P";
     output: list of polys";

NoetherDifferent

NoetherDifferent(P, I): computes a min.homog. gen. system
          of the Noether different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal of P
     output: list of polys

NoetherDifferentRel

NoetherDifferentRel(P, Ix): computes a min.homog. gen. system
          of the Noether different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: list of polys

HilbertNoetherDiff

HilbertNoetherDiff(P, I): computes the Hilbert function
          of the Noether different of R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal of P
     output: the Hilbert function

HilbertNoetherDiffRel

HilbertNoetherDiffRel(P, Ix): computes the Hilbert function
          of the Noether different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: the Hilbert function

AffineKaehlerDiff

AffineKaehlerDiff(P,I,m): computes a generating system
          of the m-th Kaehler different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an ideal of P, m non-neg integer
     output: list of polys

KaehlerDifferent

KaehlerDifferent(P,I,m): computes a min.homog.gen. system
          of the m-th Kaehler different of algebra R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
     output: list of polys

KaehlerDifferentRel

KaehlerDifferentRel(P, Ix): computes a min. homog.gen. system
          of the Kaehler different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
            in P^n_K such that intersect(X,Z(x[0])) is empty
     output: list of polys

HilbertKaehlerDiff

HilbertKaehlerDiff(P,I,m): computes the Hilbert function
          of the m-th Kaehler different of R/K, R=P/I.
     input: P=K[x[1..N]], I an homog. ideal, m non-neg integer
     output: the Hilbert function

HilbertKaehlerDiffRel

HilbertKaehlerDiffRel(P, Ix): computes the Hilbert function
          of the Kaehler different of R/K[x[0]], R=P/Ix.
     input: P=K[x[0..N]], Ix vanishing ideal of a 0-dim scheme X
             in P^n_K such that intersect(X,Z(x[0])) is empty
     output: the Hilbert function

AffBMAlgo

AffBMAlgo(LX,O): computes a list [GBasis,OrderIdeal,Separators]
          for a 0-dim ideal with its primary components LX.
     input: P=K[x[1..N]], LX list of 0-dim primary ideals
            q_j associated to a 0-dim ideal of P
            O list of K-bases of P/q_j
     output: [GBasis,OrderIdeal,Separators] of P/intersection(q_j)

DedekindDifferentRel

DedekindDifferentRel(P,Points): computes a min.homog.gen. system
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
     input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
     output: list of polys

HilbertDedekindDiffRel

HilbertDedekindDiffRel(P,Points): computes the Hilbert function
          of the Dedekind different of R/K[x[0]], where R=P/Ix
          and Ix is the vanishing ideal of Points.
     input: P=K[x[0..N]], Points=list of points in P^n_K
            not in Z(x[0])
     output: the Hilbert function

KaehlerDiffModule

KaehlerDiffModule(P, Ix, m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form
          has Omega^m(R/K)=P^t/U, R=P/Ix, t=binom{n}{m}.
     input: P=K[x[1..N]], Ix a non-zero ideal, m non-neg integer
     output: submodule with generators

HilbertKDM

HilbertKDM(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form.
     input: P=K[x[1..N]], Ix a non-zero homog. ideal, 0<m<n+1
     output: HF of Omega^m(R/K)

KDMOfPoints

KDMOfPoints(P,Points,m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
     input: P=K[x[1..N]], Points=list of points, m non-neg integer
     output: submodule with generators

KDMOfProjectivePoints

KDMOfProjectivePoints(P,Points,m): computes a submodule U of P^t
          such that the module of Kaehler differential m-form has
          Omega^m(R/K)=P^t/U, R=P/I_Points, t=binom{n}{m}.
     input: P=K[x[1..N]], Points=list of projective points,
            m non-neg integer
     output: submodule with generators

KDMRel

KDMRel(P, Ix, m): computes a submodule U of P^t such that
          the module of Kaehler differential m-form of R/K[x[0]]
          has Omega^m(R/K[x[0]])=P^t/U, R=P/Ix, t=binom{n}{m}.
     input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer
     output: submodule with generators

HilbertKDMRel

HilbertKDMRel(P, Ix, m): computes the Hilbert function of
          the module of Kaehler differential m-form of R/K[x[0]].
     input: P=K[x[0..N]], Ix a non-zero homog. ideal such that
            K[x[0]] is the Noetherian normalization of R,
            m non-neg integer";
     output: HF of Omega^m(R/K[x_0])

The Subalgebra Data Type

The package also introduces a new Data type, i.e. a record tagged with "$apcocoa/sagbi.Subalgebra". Given a polynomial ring P and a list of polynomials G from P, one can create the subalgebra K[G] using the function SB.Subalgebra.

Use P ::= QQ[x,y,z];
G := [x^2+y*z,z];
S := SB.Subalgebra(P,G);

For details about the structure of this data type, see the function page. While nearly all functionalities of the SAGBI package can be used without touching this data type, it has many advantages to do so because it stores informations of previous computations, see the example below. This is also the reason why many of the getter functions need the subalgebra to be called by reference. The following getter function can be used to get informations about the subalgebra:

SB.GetCoeffRing(S); -- returns the coefficient ring
SB.GetGens(S); -- returns the set G
SB.GetID(S); -- returns the unique ID of S
SB.GetLTSA(ref S); -- returns the subalgebra K[LT(f) | f in S]
SB.GetRing(S); -- returns P
SB.GetSAGBI(ref S); -- returns the reduced SAGBI basis of S (if a finite one exists)


Example for the Subalgebra Data Type

So what advantages does the Subalgebra data type have? Consider the following example.

Use P ::= QQ[x,y,z];
G := [x^2 -z^2,  x*y +z^2,  y^2 -2*z^2];
L := SB.SAGBI(G);
f := x^10*y^2 +x^6*y^6 -2*x^10*z^2 -5*x^8*y^2*z^2 +6*x^5*y^5*z^2 +10*x^8*z^4 +10*x^6*y^2*z^4 +15*x^4*y^4*z^4 -20*x^6*z^6 -10*x^4*y^2*z^6 +20*x^3*y^3*z^6 +20*x^4*z^8 +20*x^2*y^2*z^8 -10*x^2*z^10 +6*x*y*z^10 -y^2*z^10 +3*z^12;
b := SB.IsInSubalgebra(f,G);
h := SB.SubalgebraHS(G);

While this is only a simple example, the second code is much faster. At the time this is written, the second computation is approximately two times as fast as the first one.