ApCoCoA-1:BB.HomNDgens: Difference between revisions
From ApCoCoAWiki
KHiddemann (talk | contribs) mNo edit summary |
KHiddemann (talk | contribs) new alias |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title> | <title>BB.HomNDgens</title> | ||
<short_description>generators of vanishing ideal of homogeneous border basis scheme</short_description> | <short_description>generators of vanishing ideal of homogeneous border basis scheme</short_description> | ||
<syntax> | <syntax> | ||
BB.HomNDgens(K:INT,OO:LIST):LIST | |||
</syntax> | </syntax> | ||
<description> | <description> | ||
Computes the generators of the vanishing ideal of the homogenous border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The inputs are an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>. | Computes the generators of the vanishing ideal of the homogenous border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The inputs are an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>. | ||
</description> | </description> | ||
<see> | <see>BB.ASgens</see> | ||
<see> | <see>BB.HomASgens</see> | ||
<see> | <see>BB.NDgens</see> | ||
<key>kreuzer</key> | <key>kreuzer</key> | ||
<key>bb.homndgens</key> | |||
<key>borderbasis.homndgens</key> | <key>borderbasis.homndgens</key> | ||
<wiki-category>Package_borderbasis</wiki-category> | <wiki-category>Package_borderbasis</wiki-category> | ||
</command> | </command> |
Revision as of 19:49, 8 November 2007
BB.HomNDgens
generators of vanishing ideal of homogeneous border basis scheme
Syntax
BB.HomNDgens(K:INT,OO:LIST):LIST
Description
Computes the generators of the vanishing ideal of the homogenous border basis scheme corresponding to the lifting of the K-th element of NDneighbors(OO). The inputs are an integer K in the range 1..Len(NDneighbors(OO)) and a list OO of terms that specify an order ideal. The output is a list of polynomials in the ring <formula>BBS=K[c_{ij}]</formula>.