ApCoCoA-1:DA.Sep: Difference between revisions

From ApCoCoAWiki
S schuster (talk | contribs)
No edit summary
S schuster (talk | contribs)
Applied style principles.
Line 1: Line 1:
<command>
<command>
     <title>diffalg.Sep</title>
     <title>DA.Sep</title>
     <short_description>the separand of a differential polynomial</short_description>
     <short_description>Computes the separand of a differential polynomial.</short_description>
<syntax>
<syntax>
$diffalg.Sep(F:POLY):POLY
DA.Sep(F:POLY):POLY
</syntax>
</syntax>
<description>
<description>
Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.
DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.


The sperand of F is just the initial of the derivative of F.
The seperand of F is just the initial of the derivative of F.
 
<itemize>
<item>@param F A differential polynomial.</item>
<item>@return The seperand of F wrt. to the current differential term ordering.</item>
</itemize>


<example>
<example>
Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord($diffalg.DiffTO("Lex"));
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));


F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=$diffalg.Differentiate(F);
G:=DA.Differentiate(F);
$diffalg.Initial(G);
DA.Initial(G);
-------------------------------
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
-------------------------------
$diffalg.Sep(F);
DA.Sep(F);
-------------------------------
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
Line 28: Line 33:
</example>
</example>
</description>
</description>
<see>Diffalg.DiffTO</see>
<types>
<see>Diffalg.Differentiate</see>
<type>polynomial</type>
<see>Diffalg.Initial</see>
</types>
<see>DA.DiffTO</see>
<see>DA.Differentiate</see>
<see>DA.Initial</see>
<key>Sep</key>
<key>DA.Sep</key>
<key>diffalg.Sep</key>
<key>differential.Sep</key>
<wiki-category>Package_diffalg</wiki-category>
<wiki-category>Package_diffalg</wiki-category>
</command>
</command>

Revision as of 13:58, 22 April 2009

DA.Sep

Computes the separand of a differential polynomial.

Syntax

DA.Sep(F:POLY):POLY

Description

DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectivly.

The seperand of F is just the initial of the derivative of F.

  • @param F A differential polynomial.

  • @return The seperand of F wrt. to the current differential term ordering.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("Lex"));

F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=DA.Differentiate(F);
DA.Initial(G);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
DA.Sep(F);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------


DA.DiffTO

DA.Differentiate

DA.Initial