ApCoCoA-1:Bertini.BMSolve: Difference between revisions
From ApCoCoAWiki
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
<itemize> | <itemize> | ||
<item>@param <em>M</em>: List of polynomials in the system | <item>@param <em>M</em>: List of polynomials in the system.</item> | ||
</itemize> | </itemize> | ||
Line 21: | Line 21: | ||
Bertini.BMSolve(M); | Bertini.BMSolve(M); | ||
-- And we achieve: | -- And we achieve a list of lists containing finite solutions: | ||
---------------------------------------- | ---------------------------------------- | ||
[[Vector(1000000000000001/1000000000000000, -2305082859180703/100000000000000000000000000000), | |||
Vector(1999999999999971/1000000000000000, 4135565953005217/100000000000000000000000000000)], | |||
[Vector(1000000000000003/500000000000000, 2604577577014449/50000000000000000000000000000), | |||
Vector(500000000000001/500000000000000, -619892334722183/25000000000000000000000000000)], | |||
-2 | [Vector(-2, 1724810333092189/1000000000000000000000000000000), | ||
- | Vector(-500000000000001/500000000000000, -355984244774691/200000000000000000000000000000)], | ||
[Vector(-9999999999999971/10000000000000000, -4053926086793577/1000000000000000000000000000000), | |||
- | Vector(-1999999999999999/1000000000000000, -3669041992638223/5000000000000000000000000000000)]] | ||
- | --For other Bertini output files refer to Bertini directory (../ApCoCoA-1.2/Bertini) | ||
1. | |||
------------------------------------------ | ------------------------------------------ | ||
</example> | </example> |
Revision as of 10:51, 1 July 2009
Bertini.BMSolve
Solves zero dimensional non-homogeneous polynomial system using mult-homogenization with default configurations.
Syntax
Bertini.BMSolve(M:LIST)
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param M: List of polynomials in the system.
Example
-- We want to solve the non-homogenous system x[1]^2+x[2]^2-5=0, x[1]x[2]-2=0, using multi-homogenization. Use S ::= QQ[x[1..2]]; -- Define appropriate ring M := [x[1]^2+x[2]^2-5, x[1]x[2]-2]; -- Then we compute the solution with Bertini.BMSolve(M); -- And we achieve a list of lists containing finite solutions: ---------------------------------------- [[Vector(1000000000000001/1000000000000000, -2305082859180703/100000000000000000000000000000), Vector(1999999999999971/1000000000000000, 4135565953005217/100000000000000000000000000000)], [Vector(1000000000000003/500000000000000, 2604577577014449/50000000000000000000000000000), Vector(500000000000001/500000000000000, -619892334722183/25000000000000000000000000000)], [Vector(-2, 1724810333092189/1000000000000000000000000000000), Vector(-500000000000001/500000000000000, -355984244774691/200000000000000000000000000000)], [Vector(-9999999999999971/10000000000000000, -4053926086793577/1000000000000000000000000000000), Vector(-1999999999999999/1000000000000000, -3669041992638223/5000000000000000000000000000000)]] --For other Bertini output files refer to Bertini directory (../ApCoCoA-1.2/Bertini) ------------------------------------------
See also
>