Category:ApCoCoA-1:Package gbmr: Difference between revisions

From ApCoCoAWiki
No edit summary
No edit summary
Line 11: Line 11:
(iii) Each polynomial in Q[M] is represented as a LIST of LISTs, which are pairs of form [a_{i}, w_{i}]. For example, polynomial F:=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].  
(iii) Each polynomial in Q[M] is represented as a LIST of LISTs, which are pairs of form [a_{i}, w_{i}]. For example, polynomial F:=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].  


(iv) Ordering is of STRING type, which is an abbreviated name of a term ordering. For exapme, "LLEX" stands for a length-lexicographic ordering and "ELIM" stands for an elimination ordering. These two term orderings are the only supported orderings currently.
(iv) Ordering is of STRING type, which is an abbreviated name of a term ordering. For exapme, "LLEX" stands for a length-lexicographic ordering and "ELIM" stands for an elimination ordering. These two term orderings are the only orderings supported by the package currently.
 
 
Let p, f be two non-zero polynomials in Q[M]. We say f '''prefix reduce'''s p to q at a monomial a*t of p in one step, denoted by p-->_{f}q if
 
  (1) LT(f)w = t for some w in M, i.e., LT(f) is a prefix of t, and
  (2) q = p-a*LT(f)^{-1}*f*w.
 
A set G is said to be a '''Groebner basis''' with respect to the reduction -->, if <-->_{G} = Equiv_{Ideal(G)} and -->_{G} is confluent.
 


{{ApCoCoAServer}}
{{ApCoCoAServer}}
[[Category:ApCoCoA_Manual]]
[[Category:ApCoCoA_Manual]]

Revision as of 11:43, 26 May 2010

Package gbmr is designed to provide basic operations (addition, subtraction, multiplication) over monoid rings and Groebner basis computations for finite generated (one and two-sided) ideals.

Let Q be rational field and M=<X, R> be a finited presented monoid, where X is a finite alphabet and R is a finite set of relations. A monoid ring of M over Q, denoted by Q[M], is a ing of all finite formal sums (called polynomials) a_{1}*w_{1}+ a_{2}*w_{2} +...+a_{n}*w_{n} with coefficients a_{i} in Q\{0} and terms w_{i} in M.

Note that

(i) X is of STRING type in this package. Every letters in X MUST appear only once. The order of letters in X is very important, since it induces a term ordering later. For example, X:="abc"; Order:="LLEX"; means a length-lexicographic ordering induced by a>b>c.

(ii) Each element (relation) in R is of form [L, R], where L and R are terms in M. Each term in M is represented as a STRING. For example, xy^2x is represented as "xyyx", and relation (yx, xy) is represented as ["yx", "xy"].

(iii) Each polynomial in Q[M] is represented as a LIST of LISTs, which are pairs of form [a_{i}, w_{i}]. For example, polynomial F:=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].

(iv) Ordering is of STRING type, which is an abbreviated name of a term ordering. For exapme, "LLEX" stands for a length-lexicographic ordering and "ELIM" stands for an elimination ordering. These two term orderings are the only orderings supported by the package currently.

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.