ApCoCoA-1:BBSGen.NonStand: Difference between revisions
From ApCoCoAWiki
Removing all content from page |
No edit summary |
||
Line 1: | Line 1: | ||
<command> | |||
<title>BBSGen.Wmat</title> | |||
<short_description>This function computes the non-standard Indeterminates with respect to the arrow grading in the Coordinate Ring of Border Basis Scheme. </short_description> | |||
<syntax> | |||
NonStand(OO,BO,N,W); | |||
NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST | |||
</syntax> | |||
<description> | |||
<itemize> | |||
<item>@param The order ideal OO, the border BO the number of Indeterminates of the Polynomial Ring and the Weight Matrix.</item> | |||
<item>@return List of Indeterminates and their degree wrt. the arrow grading. </item> | |||
</itemize> | |||
<example> | |||
Use R::=QQ[x[1..2]]; | |||
OO:=BB.Box([1,1]); | |||
BO:=BB.Border(OO); | |||
W:=BBSGen.Wmat(OO,BO,N); | |||
BBSGen.NonStand(OO,BO,N,W); | |||
[[c[1,3], [R :: 1, R :: 2]], | |||
[c[1,4], [R :: 2, R :: 1]], | |||
[c[2,3], [R :: 1, R :: 1]], | |||
[c[3,4], [R :: 1, R :: 1]]] | |||
</example> | |||
</description> | |||
<types> | |||
<type>borderbasis</type> | |||
<type>list</type> | |||
</types> | |||
<see>BB.Border</see> | |||
<see>BB.Box</see> | |||
<see> BBSGen.Wmat</see> | |||
<key>Wmat</key> | |||
<key>BBSGen.Wmat</key> | |||
<key>bbsmingensys.Wmat</key> | |||
<wiki-category>Package_bbsmingensys</wiki-category> | |||
</command> |
Revision as of 15:45, 31 May 2012
BBSGen.Wmat
This function computes the non-standard Indeterminates with respect to the arrow grading in the Coordinate Ring of Border Basis Scheme.
Syntax
NonStand(OO,BO,N,W); NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
Description
@param The order ideal OO, the border BO the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
@return List of Indeterminates and their degree wrt. the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); BBSGen.NonStand(OO,BO,N,W); [[c[1,3], [R :: 1, R :: 2]], [c[1,4], [R :: 2, R :: 1]], [c[2,3], [R :: 1, R :: 1]], [c[3,4], [R :: 1, R :: 1]]]