ApCoCoA-1:BBSGen.NonStandPoly: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
Removing all content from page
Sipal (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
  <title>BBSGen.Wmat</title>
  <short_description>This function computes the non-standard polynomials among the generators of the vanishing ideal of border basis
scheme.
           
</short_description>
 
<syntax>
NonStandPoly(OO,BO,W,N);
NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST


</syntax>
  <description>
<itemize>
  <item>@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.
</item>
  <item>@return List of polynomials  and their degree wrt. the arrow grading.  .</item>
</itemize>
<example>
Use R::=QQ[x[1..2]];
OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
W:=Wmat(OO,BO,N);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];
Use XX;
NonStandPoly(OO,BO,W,N);
  [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
    R :: Vector(1, 2)],
  [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4],
    R :: Vector(2, 1)],
  [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4],
    R :: Vector(2, 2)],
  [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3],
    R :: Vector(1, 1)],
  [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4],
    R :: Vector(2, 1)],
  [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4],
    R :: Vector(1, 1)],
  [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3],
    R :: Vector(1, 2)],
  [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4],
    R :: Vector(1, 1)]]
</example>
  </description>
  <types>
    <type>borderbasis</type>
    <type>ideal</type>
    <type>apcocoaserver</type>
  </types>
<see>BB.Border</see>
  <see>BB.Box</see>
  <key>Wmat</key>
  <key>BBSGen.Wmat</key>
  <key>bbsmingensys.Wmat</key>
  <wiki-category>Package_bbsmingensys</wiki-category>
</command>

Revision as of 16:12, 31 May 2012

BBSGen.Wmat

This function computes the non-standard polynomials among the generators of the vanishing ideal of border basis

scheme.


Syntax

NonStandPoly(OO,BO,W,N); 
NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST 

Description


  • @param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.

  • @return List of polynomials and their degree wrt. the arrow grading. .


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
W:=Wmat(OO,BO,N);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
Use XX;

NonStandPoly(OO,BO,W,N);

  [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
    R :: Vector(1, 2)],
  [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4],
    R :: Vector(2, 1)],
  [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4],
    R :: Vector(2, 2)],
  [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3],
    R :: Vector(1, 1)],
  [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4],
    R :: Vector(2, 1)],
  [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4],
    R :: Vector(1, 1)],
  [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3],
    R :: Vector(1, 2)],
  [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4],
    R :: Vector(1, 1)]]




BB.Border

BB.Box