ApCoCoA-1:BBSGen.NonStandPoly: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
No edit summary
Sipal (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
   <title>BBSGen.Wmat</title>
   <title>BBSGen.Wmat</title>
   <short_description>This function computes the non-standard polynomials among the generators of the vanishing ideal of border basis
   <short_description>This function computes the non-standard polynomials with respect to the arrpw grading among the generators of the vanishing ideal of border basis
scheme.
scheme.
              
              
Line 25: Line 25:
OO:=BB.Box([1,1]);
OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
BO:=BB.Border(OO);
W:=Wmat(OO,BO,N);
W:=BBSGen.Wmat(OO,BO,N);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
Use XX;
Use XX;


NonStandPoly(OO,BO,W,N);
BBSGen.NonStandPoly(OO,BO,W,N);


   [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
   [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
Line 60: Line 60:
<see>BB.Border</see>
<see>BB.Border</see>
   <see>BB.Box</see>
   <see>BB.Box</see>
<see>BBSGen.Wmat</see>
<see>BBSGen.NonStand</see>
   <key>Wmat</key>
   <key>Wmat</key>
   <key>BBSGen.Wmat</key>
   <key>BBSGen.Wmat</key>

Revision as of 16:19, 31 May 2012

BBSGen.Wmat

This function computes the non-standard polynomials with respect to the arrpw grading among the generators of the vanishing ideal of border basis

scheme.


Syntax

NonStandPoly(OO,BO,W,N); 
NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST 

Description


  • @param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring N and the Weight Matrix.

  • @return List of polynomials and their degree wrt. the arrow grading. .


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
W:=BBSGen.Wmat(OO,BO,N);
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
Use XX;

BBSGen.NonStandPoly(OO,BO,W,N);

  [  c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
    R :: Vector(1, 2)],
  [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4],
    R :: Vector(2, 1)],
  [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4],
    R :: Vector(2, 2)],
  [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3],
    R :: Vector(1, 1)],
  [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4],
    R :: Vector(2, 1)],
  [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4],
    R :: Vector(1, 1)],
  [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3],
    R :: Vector(1, 2)],
  [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4],
    R :: Vector(1, 1)]]




BB.Border

BB.Box

BBSGen.Wmat

BBSGen.NonStand