ApCoCoA-1:BBSGen.Poldeg: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
No edit summary
Sipal (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
   <title>BBSGen.PolDeg</title>
   <title>BBSGen.PolDeg</title>
   <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c[i,j]].
   <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see <ref>BBSGen.WMat</ref>)
    
    
              
              
Line 14: Line 14:


<itemize>
<itemize>
   <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[c_ij], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.
   <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis)
</item>
</item>
   <item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading .  </item>
   <item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading .  </item>
Line 25: Line 25:
OO:=BB.Box([1,1]);
OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
BO:=BB.Border(OO);
W:=BBSGen.Wmat(OO,BO,N);
Mu:=Len(OO);
Mu:=Len(OO);
Nu:=Len(BO);
Nu:=Len(BO);
N:=Len(Indets());
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  


Line 46: Line 46:
     <type>apcocoaserver</type>
     <type>apcocoaserver</type>
   </types>
   </types>
<see>BB.Border</see>
 
  <see>BB.Box</see>
  <see>BBSGen.Wmat</see>
  <see>BBSGen.Wmat</see>



Revision as of 12:17, 8 June 2012

BBSGen.PolDeg

This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see BBSGen.WMat)


Syntax

BBSGen. Poldeg(F,OO,BO,N,W);
BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;  

Description


  • @param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis)

  • @return Degree vector of the given homogenous polynomial wrt. the arrow grading .


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; 

BBSGen.Poldeg(F,OO,BO,N,W);

R :: Vector(1, 1)




BBSGen.Wmat

BBSGen.NonTriv

BBSGen.BBFinder