ApCoCoA-1:BBSGen.TraceSyzStep: Difference between revisions

From ApCoCoAWiki
Sipal (talk | contribs)
No edit summary
Sipal (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
   <title>BBSGen.TraceSyzStep</title>
   <title>BBSGen.TraceSyzStep</title>
   <short_description>: This function only computes the  trace syzygy for the degree of the given monomial.  
   <short_description>: This function computes the  trace polynomial  with respect to a  given term and a variable.(see <ref>BBSGen.TraceSyzFull</ref>)
</short_description>
</short_description>
    
    
<syntax>
<syntax>


TraceSyzLin(OO,BO,N);
BBSGen.TraceSyzStep(OO,BO,N);
TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):LIST
BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
</syntax>
</syntax>
   <description>
   <description>
 
Note that the chosen variable must be a divisor of the term Mon.
Let  Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation  [A_k,A_l].  The result of the Trace Syzygy computation is K[c]-linear combination of  Tau^kl_ij    that is equal to 0. This function only computes the trace syzygy for the degree of the given monomial.  
 


<itemize>
<itemize>
   <item>@param  The Monomial Mon, the distinguished indterminate of choice,  order ideal OO, border BO, the number of Indeterminates of the Polynomial.
   <item>@param  The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N},  order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <see>BB.Border</see>
  <see>BB.Box</see> from package borderbasis)
</item>
</item>
   <item>@return  Trace syzygy of the degree of the given monomial.</item>
   <item>@return  Trace polynomial with respect to a term Mon and a variable X.</item>
</itemize>
</itemize>


Line 29: Line 28:
Nu:=Len(BO);
Nu:=Len(BO);


Mon:=x[1]^2x[2];--------Target Monomial
Pi:=x[1]^2x[2];


X:=x[1];  ------------Choice of the Indeterminate
X:=x[1];  ------------Choice of the Indeterminate
Line 35: Line 34:
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
   
   
  BBSGen.TraceSyzStep(Mon,X,OO,BO,N);
  BBSGen.TraceSyzStep(Pi,X,OO,BO,N);
    
    
  c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] +
c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] +  
c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] +  
c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] +  
c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] +
c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] +
c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] +
  t[1,2,1,3] + t[1,2,2,4]
  t[1,2,1,3] + t[1,2,2,4]


Line 50: Line 50:
     <type>apcocoaserver</type>
     <type>apcocoaserver</type>
   </types>
   </types>
<see>BB.Border</see>
 
  <see>BB.Box</see>
  <see>BBSGen.Wmat</see>
  <see>BBSGen.Wmat</see>
<see>BBSGen.TraceSyzLin</see>
<see>BBSGen.TraceSyzLin</see>

Revision as of 19:14, 8 June 2012

BBSGen.TraceSyzStep

This function computes the trace polynomial with respect to a given term and a variable.(see BBSGen.TraceSyzFull)

Syntax

BBSGen.TraceSyzStep(OO,BO,N);
BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST

Description

Note that the chosen variable must be a divisor of the term Mon.

  • @param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see

    BB.Border

    BB.Box

    from package borderbasis)

  • @return Trace polynomial with respect to a term Mon and a variable X.


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);

Pi:=x[1]^2x[2];

X:=x[1];   ------------Choice of the Indeterminate

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
 
 BBSGen.TraceSyzStep(Pi,X,OO,BO,N);
  
c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + 
c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + 
c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] +
 c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] +
 t[1,2,1,3] + t[1,2,2,4]

-------------------------------


BBSGen.Wmat

BBSGen.TraceSyzLin

BBSGen.TraceSyzLinStep

BBSGen.TraceSyzFull