ApCoCoA-1:Cyclic groups: Difference between revisions
From ApCoCoAWiki
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
C(n) = <a | a^{n} = 1> | C(n) = <a | a^{n} = 1> | ||
==== Reference ==== | |||
Gallian, Joseph (1998), Contemporary abstract algebra (4th ed.), Boston: Houghton Mifflin, Chapter 4. | |||
==== Computation ==== | ==== Computation ==== | ||
Line 16: | Line 17: | ||
Use ZZ/(2)[a]; | Use ZZ/(2)[a]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
Define CreateRelationsCyclic() | Define CreateRelationsCyclic() | ||
Relations:=[]; | |||
// Add relation a^n = 1 | |||
Append(Relations,[[a^MEMORY.N],[-1]]); | |||
Return Relations; | |||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsCyclic(); | Relations:=CreateRelationsCyclic(); | ||
Relations; | |||
// Compute | // Compute a Groebner Basis. | ||
Gb:=NC.GB(Relations); | |||
Gb; | |||
// RESULT for MEMORY.N = 5 :: [[[a^5], [1]]] | // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]] |
Revision as of 07:32, 23 August 2013
Description
Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be interpreted as Z with the addition of integers as the group operation. For every cyclic group there only exists one subgroup containing a, the group itself.
C(n) = <a | a^{n} = 1>
Reference
Gallian, Joseph (1998), Contemporary abstract algebra (4th ed.), Boston: Houghton Mifflin, Chapter 4.
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of cyclic group MEMORY.N:=5; Use ZZ/(2)[a]; NC.SetOrdering("LLEX"); Define CreateRelationsCyclic() Relations:=[]; // Add relation a^n = 1 Append(Relations,[[a^MEMORY.N],[-1]]); Return Relations; EndDefine; Relations:=CreateRelationsCyclic(); Relations; // Compute a Groebner Basis. Gb:=NC.GB(Relations); Gb; // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]