Package sagbi/SB.IsInSubalgebra SAGBI: Difference between revisions
From ApCoCoAWiki
Andraschko (talk | contribs) m Andraschko moved page SB.IsInSubalgebra SAGBI to Package sagbi/SB.IsInSubalgebra SAGBI: moved as subpage |
Andraschko (talk | contribs) mNo edit summary |
||
Line 35: | Line 35: | ||
<type>poly</type> | <type>poly</type> | ||
</types> | </types> | ||
<seealso> | |||
<see>Package sagbi/SB.IsInSubalgebra</see> | |||
</seealso> | |||
<key>sagbi</key> | <key>sagbi</key> | ||
<key>sb.sagbi</key> | <key>sb.sagbi</key> | ||
<key>sagbi.sagbi</key> | <key>sagbi.sagbi</key> | ||
<wiki-category> | <wiki-category>Package_sagbi</wiki-category> | ||
</command> | </command> |
Revision as of 13:36, 6 October 2020
This article is about a function from ApCoCoA-2. |
SB.IsInSubalgebra_SAGBI
Tests whether a polynomial is in a standard-graded subalgebra using SAGBI bases.
Syntax
SB.IsInSubalgebra_SAGBI(f:POLY, G:LIST of POLY):BOOL
Description
This function takes a polynomials f and a list of homogeneous polynomials G and checks whether F is in the algebra generated by the polynomials in G using truncated SAGBI bases.
@param f A polynomial.
@param G A list of homogeneous polynomials which generate a subalgebra.
@return true if f is in the subalgebra generated by G, false elsewise.
Example
Use QQ[x[1..2]]; G := [x[1]-x[2], x[1]*x[2]-x[2]^2, x[1]*x[2]^2]; SB.IsInSubalgebra_SAGBI(x[1]*x[2]^4-x[2]^5, G); ----------------------------------------------------------------------------- true
Example
Use QQ[y[1..3]]; G := [y[1]^2-y[3]^2, y[1]*y[2]+y[3]^2, y[2]^2-2*y[3]^2]; SB.IsInSubalgebra_SAGBI(y[3]^4, G); ----------------------------------------------------------------------------- false
See also
Package sagbi/SB.IsInSubalgebra