ApCoCoA-1:DA.PseudoAutoReduce: Difference between revisions
From ApCoCoAWiki
m Bot: Category moved |
m fixed links to namespace ApCoCoA |
||
Line 6: | Line 6: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
<ref>DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces | <ref>ApCoCoA-1:DA.PseudoAutoReduce|DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces | ||
to zero with respect to the returned list. | to zero with respect to the returned list. | ||
<itemize> | <itemize> | ||
Line 24: | Line 24: | ||
<type>polynomial</type> | <type>polynomial</type> | ||
</types> | </types> | ||
<see>DA.DiffTO</see> | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> | ||
<see>DA.PseudoReduce</see> | <see>ApCoCoA-1:DA.PseudoReduce|DA.PseudoReduce</see> | ||
<key>PseudoAutoReduce</key> | <key>PseudoAutoReduce</key> |
Revision as of 08:11, 7 October 2020
DA.PseudoAutoReduce
Computes a pseudo reduced list of differential polynomials.
Syntax
DA.PseudoAutoReduce(G:LIST):LIST
Description
DA.PseudoAutoReduce returns a pseudo reduced list, i.e., every element of G reduces
to zero with respect to the returned list.
@param G List of differential polynomials.
@return An autoreduced list of differential polynomials.
Example
Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>)); DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]); ------------------------------- [x[1,0]^2 + 3x[1,0], x[2,0] + x[1,1]^4] -------------------------------