ApCoCoA-1:DA.Sep: Difference between revisions

From ApCoCoAWiki
m Bot: Category moved
m fixed links to namespace ApCoCoA
Line 6: Line 6:
</syntax>
</syntax>
<description>
<description>
<ref>DA.Sep</ref> returns the separand of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of <tt>F</tt> is just the initial of the derivative of <tt>F</tt>.
<ref>ApCoCoA-1:DA.Sep|DA.Sep</ref> returns the separand of polynomial <tt>F</tt> wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of <tt>F</tt> is just the initial of the derivative of <tt>F</tt>.


<itemize>
<itemize>
Line 33: Line 33:
</types>
</types>


<see>DA.DiffTO</see>
<see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see>
<see>DA.Differentiate</see>
<see>ApCoCoA-1:DA.Differentiate|DA.Differentiate</see>
<see>DA.Initial</see>
<see>ApCoCoA-1:DA.Initial|DA.Initial</see>


<key>Sep</key>
<key>Sep</key>

Revision as of 08:11, 7 October 2020

DA.Sep

Computes the separand of a differential polynomial.

Syntax

DA.Sep(F:POLY):POLY

Description

DA.Sep returns the separand of polynomial F wrt. the current differential term ordering, or the hereby induced ranking, respectively. The seperand of F is just the initial of the derivative of F.

  • @param F A differential polynomial.

  • @return The seperand of F wrt. to the current differential term ordering.

Example

Use QQ[x[1..2,0..20]];
Use QQ[x[1..2,0..20]], Ord(DA.DiffTO(<quotes>Lex</quotes>));

F:=x[1,2]^3x[2,2]^2 + x[1,1]^3x[2,2]^2 + 1/4x[1,2];
G:=DA.Differentiate(F);
DA.Initial(G);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------
DA.Sep(F);
-------------------------------
2x[1,2]^3x[2,2] + 2x[1,1]^3x[2,2]
-------------------------------


DA.DiffTO

DA.Differentiate

DA.Initial