Package sagbi/SB.SAGBI: Difference between revisions
From ApCoCoAWiki
Andraschko (talk | contribs) m changed category |
Andraschko (talk | contribs) added version info |
||
Line 1: | Line 1: | ||
{{Version|2|[[ApCoCoA:SB.Sagbi]]}} | {{Version|2|[[ApCoCoA-1:SB.Sagbi]] and [[ApCoCoA-1:SB.ReducedSagbi]]}} | ||
<command> | <command> | ||
Line 16: | Line 16: | ||
<example> | <example> | ||
Use QQ[x | Use QQ[x,y,z], DegRevLex; | ||
S := SB.SAGBI([x | S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]); | ||
indent(S); | indent(S); | ||
---- | -- [ | ||
-- y^2 -2*z^2, | |||
-- x*y +z^2, | |||
x | -- x^2 -z^2, | ||
x | -- x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4 | ||
x | -- ] | ||
] | |||
</example> | </example> | ||
</description> | </description> | ||
< | <seealso> | ||
< | <see>Package sagbi/SB.TruncSAGBI</see> | ||
<see>Package sagbi/SB.SAGBITimeout</see> | |||
<see>Package sagbi/SB.IsSAGBIOf</see> | |||
<see>Package sagbi/SB.GetSAGBI</see> | |||
<see>Package sagbi/SB.GetTruncSAGBI</see> | |||
</seealso> | |||
<types> | <types> | ||
<type>sagbi</type> | <type>sagbi</type> | ||
<type>poly</type> | <type>poly</type> | ||
</types> | </types> | ||
<key> | <key>SAGBI</key> | ||
<key> | <key>SB.SAGBI</key> | ||
<key>sagbi. | <key>apcocoa/sagbi.SAGBI</key> | ||
<wiki-category> | <wiki-category>Package sagbi</wiki-category> | ||
</command> | </command> |
Revision as of 17:57, 27 October 2020
This article is about a function from ApCoCoA-2. If you are looking for the ApCoCoA-1 version of it, see ApCoCoA-1:SB.Sagbi and ApCoCoA-1:SB.ReducedSagbi. |
SB.SAGBI
Computes a finite SAGBI-basis of a subalgebra if existing.
Syntax
SB.SAGBI(G:LIST of POLY):LIST of POLY
Description
This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation runs until it is interrupted.
@param G A list of polynomials which generates a subalgebra.
@return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G.
Example
Use QQ[x,y,z], DegRevLex; S := SB.SAGBI([x^2 -z^2, x*y +z^2, y^2 -2*z^2]); indent(S); -- [ -- y^2 -2*z^2, -- x*y +z^2, -- x^2 -z^2, -- x^2*z^2 +x*y*z^2 +(1/2)*y^2*z^2 +(-1/2)*z^4 -- ]
See also
Package sagbi/SB.GetTruncSAGBI