ApCoCoA-1:DA.LD: Difference between revisions

From ApCoCoAWiki
S schuster (talk | contribs)
No edit summary
S schuster (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
     <title>diffalg.LD</title>
     <title>DA.LD</title>
     <short_description>the leading derivative of a differential polynomial</short_description>
     <short_description>the leading derivative of a differential polynomial</short_description>
<syntax>
<syntax>
$diffalg.LD(F:POLY):POLY
DA.LD(F:POLY):POLY
</syntax>
</syntax>
<description>
<description>
LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly.
DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly.
<itemize>
<item>@param F A differential polynomial.</item>
<item>@return The leading derivative of F.</item>
</itemize>
<example>
<example>
Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord($diffalg.DiffTO("DegOrd"));
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd"));
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
$diffalg.LD(F);
DA.LD(F);
-------------------------------
-------------------------------
x[2,4]
x[2,4]
Line 17: Line 21:
</example>
</example>
</description>
</description>
<see>Diffalg.DiffTO</see>
<types>
<type>polynomial</type>
</types>
<see>DA.DiffTO</see>
<key>LD</key>
<key>DA.LD</key>
<key>diffalg.LD</key>
<key>differential.LD</key>
<wiki-category>Package_diffalg</wiki-category>
<wiki-category>Package_diffalg</wiki-category>
</command>
</command>

Revision as of 13:35, 22 April 2009

DA.LD

the leading derivative of a differential polynomial

Syntax

DA.LD(F:POLY):POLY

Description

DA.LD computes the leading derivative of polynomial F wrt. the current differential term ordering, or the hereby induced ranking respectivly.

  • @param F A differential polynomial.

  • @return The leading derivative of F.

Example

Use Q[x[1..2,0..20]];
Use Q[x[1..2,0..20]], Ord(DA.DiffTO("DegOrd"));
F:=x[1,2]^2*x[1,1]-x[2,4]^3;
DA.LD(F);
-------------------------------
x[2,4]
-------------------------------

DA.DiffTO