ApCoCoA-1:Latte.Count: Difference between revisions

From ApCoCoAWiki
Jbrandt (talk | contribs)
No edit summary
Stadler (talk | contribs)
No edit summary
Line 1: Line 1:
<command>
<command>
<title>Latte.Count</title>
<title>Latte.Count</title>
<short_description> Counts the lattice points of a polyhedral given by a number of linear constraints</short_description>
<short_description>Counts the lattice points of a polyhedral given by a number of linear constraints.</short_description>
<syntax>
<syntax>
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
</syntax>
<syntax>
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT
</syntax>
</syntax>


<description>
<description>
{{ApCoCoAServer}}
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them.


<itemize>
<itemize>
Line 34: Line 31:
   <type>cocoaserver</type>
   <type>cocoaserver</type>
</types>
</types>
<key>LattE</key>
<key>Latte</key>
<key>Count</key>
<key>Count</key>
<key>Latte.Count</key>
<key>Latte.Count</key>

Revision as of 11:55, 23 April 2009

Latte.Count

Counts the lattice points of a polyhedral given by a number of linear constraints.

Syntax

Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST):INT
Latte.Count(Equations: LIST, LesserEq: LIST, GreaterEq: LIST, Dil: INT):INT

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

  • @param Equations: A list of linear polynomials, which are equivalent to the equality-part of the polyhedral constraints

  • @param LesserEq: A list of linear polynomials, which are equivalent to the lower or equal-part of the polyhedral constraints

  • @param GreaterEq: A list of linear polynomials, which are equivalent to the greater or equal-part of the polyhedral constraints

  • @param Dil: Integer > 0, factor for dilation of the polyhedral P, to count the lattice points of the polyhedral n*P

  • @return The number of lattice points in the given polyhedral P

Example

To count the lattice points in the polyhedral P = {x &gt;= 0, y &gt;= 0, x &lt;= 1, x + y &lt;= 1}:
Use S ::= QQ[x,y];
Equations := [];
LesserEq := [x-1, x+y-1];
GreaterEq := [x,y];
Latte.Count(Equations, LesserEq, GreaterEq);