ApCoCoA-1:Weyl.WLT: Difference between revisions

From ApCoCoAWiki
Rashid (talk | contribs)
New page: <command> <title>Weyl.WLT</title> <short_description>Computes the leading term ideal of a D-ideal I in Weyl algebra <tt>A_n</tt>.</short_description> <syntax> Weyl.WLT(I:IDEAL):I...
 
Rashid (talk | contribs)
No edit summary
Line 16: Line 16:


<example>
<example>
A1::=QQ[x,d];Use A1;
L:=x^2(x-1)(x-3)d^2-(6x^3-20x^2+12x)d+(12x^2-32x+12);
I:=Ideal(L,d^5);
Weyl.WLT(I);


-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Ideal(xd^4, x^3d^2, x^2d^3, d^5)
-------------------------------
ChI:=Weyl.CharI(I);ChI;
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
The characteristic ideal lies in QQ[x,d]
--------------------------------------------------
-------------------------------
Ideal(d^5, x^4d^2 - 4x^3d^2 + 3x^2d^2, xd^3)
-------------------------------
</example>
</example>
<example>
<example>
A2::=QQ[x[1..2],d[1..2]];
Use A2;
I:=Ideal(x[1]d[2],x[2]d[1]);
Weyl.WLT(I);
-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Ideal(x[2]^2d[2], x[2]d[2]^2, x[1]d[1], x[2]d[1], x[1]d[2])
-------------------------------


</example>
</example>
Line 24: Line 50:
     <seealso>
     <seealso>
       <see>Weyl.InIw</see>
       <see>Weyl.InIw</see>
      <see>Weyl.CharI</see>
     </seealso>
     </seealso>
     <types>
     <types>

Revision as of 16:13, 8 July 2009

Weyl.WLT

Computes the leading term ideal of a D-ideal I in Weyl algebra A_n.

Syntax

Weyl.WLT(I:IDEAL):IDEAL

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

This function computes the ideal of leading monomials of all the polynomials of a D-ideal I in the Weyl algebra D.

  • @param I An ideal in the Weyl algebra.

  • @return An ideal, which is leading term ideal of I.

Example

A1::=QQ[x,d];Use A1;
L:=x^2(x-1)(x-3)d^2-(6x^3-20x^2+12x)d+(12x^2-32x+12);
I:=Ideal(L,d^5);
Weyl.WLT(I);

-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Ideal(xd^4, x^3d^2, x^2d^3, d^5)
-------------------------------
ChI:=Weyl.CharI(I);ChI;
-- CoCoAServer: computing Cpu Time = 0
-------------------------------
The characteristic ideal lies in QQ[x,d]
--------------------------------------------------

-------------------------------
Ideal(d^5, x^4d^2 - 4x^3d^2 + 3x^2d^2, xd^3)
-------------------------------

Example

A2::=QQ[x[1..2],d[1..2]];
Use A2;

I:=Ideal(x[1]d[2],x[2]d[1]);
Weyl.WLT(I);
-- CoCoAServer: computing Cpu Time = 0.016
-------------------------------
Ideal(x[2]^2d[2], x[2]d[2]^2, x[1]d[1], x[2]d[1], x[1]d[2])
-------------------------------

See also

Weyl.InIw

Weyl.CharI