ApCoCoA-1:Gbmr.PRGB: Difference between revisions
From ApCoCoAWiki
Removing all content from page |
No edit summary |
||
Line 1: | Line 1: | ||
<command> | |||
<title>Gbmr.PRGB</title> | |||
<short_description> | |||
Compute reduced Groebner basis of right ideal. | |||
</short_description> | |||
<syntax> | |||
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST | |||
</syntax> | |||
<description> | |||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | |||
<itemize> | |||
<item>@param <em>Alphabet</em>: Alphabet of the rewriting system.</item> | |||
<item>@param <em>Rules</em>: Rewriting rules of the rewriting system.</item> | |||
<item>@param <em>Order</em>: Ordering of monoids.</item> | |||
<item>@param <em>F</em>: List of generators.</item> | |||
<item>@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.</item> | |||
</itemize> | |||
<example> | |||
Alphabet := "abc"; | |||
Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]]; | |||
Order := "LLEX"; | |||
F1 := [[1,"a"], [1,"b"], [1,"c"]]; | |||
F := [F1]; | |||
Gbmr.PRGB(Alphabet, Rules, Order, F); | |||
------------------------------- | |||
[1+-1b, | |||
1+1c+1a, | |||
1c+1b+1c, | |||
1c+1b+1cc, | |||
1+1a+1ca, | |||
1b+1cc+1bc, | |||
1+1ca+1ba] | |||
</example> | |||
</description> | |||
<seealso> | |||
<see>Introduction to CoCoAServer</see> | |||
</seealso> | |||
<types> | |||
<type>apcocoaserver</type> | |||
<type>groebner</type> | |||
<key>gbmr.PRGB</key> | |||
<key>PRGB</key> | |||
<wiki-category>Package_gbmr</wiki-category> | |||
</command> |
Revision as of 09:43, 9 July 2009
Gbmr.PRGB
Compute reduced Groebner basis of right ideal.
Syntax
Gbmr.PRGB(Alphabet:STRING, Rules:LIST, Order:STRING, F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
@param Alphabet: Alphabet of the rewriting system.
@param Rules: Rewriting rules of the rewriting system.
@param Order: Ordering of monoids.
@param F: List of generators.
@return A list of polynomials which forms a reduced Groebner basis of right ideal generated by F.
Example
Alphabet := "abc"; Rules := [["aa",""], ["bb",""], ["ab","c"], ["ac", "b"], ["cb", "a"]]; Order := "LLEX"; F1 := [[1,"a"], [1,"b"], [1,"c"]]; F := [F1]; Gbmr.PRGB(Alphabet, Rules, Order, F); ------------------------------- [1+-1b, 1+1c+1a, 1c+1b+1c, 1c+1b+1cc, 1+1a+1ca, 1b+1cc+1bc, 1+1ca+1ba]
See also
<types> <type>apcocoaserver</type> <type>groebner</type>